Systems for Big Graph Analytics (SpringerBriefs in Computer Science)

Da Yan, Yuanyuan Tian, James Cheng

  • 出版商: Springer
  • 出版日期: 2017-06-13
  • 售價: $2,380
  • 貴賓價: 9.5$2,261
  • 語言: 英文
  • 頁數: 92
  • 裝訂: Paperback
  • ISBN: 331958216X
  • ISBN-13: 9783319582160
  • 相關分類: Computer-Science
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

There has been a surging interest in developing systems for analyzing big graphs generated by real applications, such as online social networks and knowledge graphs. This book aims to help readers get familiar with the computation models of various graph processing systems with minimal time investment.

This book is organized into three parts, addressing three popular computation models for big graph analytics: think-like-a-vertex, think-likea- graph, and think-like-a-matrix. While vertex-centric systems have gained great popularity, the latter two models are currently being actively studied to solve graph problems that cannot be efficiently solved in vertex-centric model, and are the promising next-generation models for big graph analytics. For each part, the authors introduce the state-of-the-art systems, emphasizing on both their technical novelties and hands-on experiences of using them. The systems introduced include Giraph, Pregel+, Blogel, GraphLab, CraphChi, X-Stream, Quegel, SystemML, etc.

Readers will learn how to design graph algorithms in various graph analytics systems, and how to choose the most appropriate system for a particular application at hand. The target audience for this book include beginners who are interested in using a big graph analytics system, and students, researchers and practitioners who would like to build their own graph analytics systems with new features.