Guide to Convolutional Neural Networks: A Practical Application to Traffic-Sign Detection and Classification
暫譯: 卷積神經網絡指南:交通標誌檢測與分類的實務應用
Hamed Habibi Aghdam, Elnaz Jahani Heravi
- 出版商: Springer
- 出版日期: 2017-05-30
- 售價: $3,350
- 貴賓價: 9.5 折 $3,183
- 語言: 英文
- 頁數: 282
- 裝訂: Hardcover
- ISBN: 331957549X
- ISBN-13: 9783319575490
海外代購書籍(需單獨結帳)
商品描述
This must-read text/reference introduces the fundamental concepts of convolutional neural networks (ConvNets), offering practical guidance on using libraries to implement ConvNets in applications of traffic sign detection and classification. The work presents techniques for optimizing the computational efficiency of ConvNets, as well as visualization techniques to better understand the underlying processes. The proposed models are also thoroughly evaluated from different perspectives, using exploratory and quantitative analysis.
Topics and features: explains the fundamental concepts behind training linear classifiers and feature learning; discusses the wide range of loss functions for training binary and multi-class classifiers; illustrates how to derive ConvNets from fully connected neural networks, and reviews different techniques for evaluating neural networks; presents a practical library for implementing ConvNets, explaining how to use a Python interface for the library to create and assess neural networks; describes two real-world examples of the detection and classification of traffic signs using deep learning methods; examines a range of varied techniques for visualizing neural networks, using a Python interface; provides self-study exercises at the end of each chapter, in addition to a helpful glossary, with relevant Python scripts supplied at an associated website.This self-contained guide will benefit those who seek to both understand the theory behind deep learning, and to gain hands-on experience in implementing ConvNets in practice. As no prior background knowledge in the field is required to follow the material, the book is ideal for all students of computer vision and machine learning, and will also be of great interest to practitioners working on autonomous cars and advanced driver assistance systems.商品描述(中文翻譯)
這本必讀的文本/參考書介紹了卷積神經網絡(ConvNets)的基本概念,並提供了使用庫來實現ConvNets於交通標誌檢測和分類應用的實用指導。本書提出了優化ConvNets計算效率的技術,以及可視化技術以更好地理解其底層過程。所提出的模型也從不同的角度進行了徹底評估,使用探索性和定量分析。
主題和特點:解釋了訓練線性分類器和特徵學習的基本概念;討論了訓練二元和多類分類器的各種損失函數;說明了如何從全連接神經網絡推導ConvNets,並回顧了評估神經網絡的不同技術;提供了一個實用的庫來實現ConvNets,解釋了如何使用Python介面來創建和評估神經網絡;描述了使用深度學習方法檢測和分類交通標誌的兩個實際案例;檢視了使用Python介面的各種可視化神經網絡的技術;在每章結尾提供自學練習,並附有有用的詞彙表,相關的Python腳本可在相關網站上獲得。
這本自成一體的指南將使那些希望理解深度學習背後理論的人受益,並獲得在實踐中實現ConvNets的實際經驗。由於不需要任何先前的背景知識來理解這些材料,本書非常適合所有計算機視覺和機器學習的學生,並且對於從事自動駕駛汽車和先進駕駛輔助系統的實務工作者也將非常感興趣。