Models, Algorithms, and Technologies for Network Analysis: NET 2016, Nizhny Novgorod, Russia, May 2016 (Springer Proceedings in Mathematics & Statistics)
- 出版商: Springer
- 出版日期: 2017-06-26
- 售價: $4,430
- 貴賓價: 9.5 折 $4,209
- 語言: 英文
- 頁數: 277
- 裝訂: Hardcover
- ISBN: 3319568280
- ISBN-13: 9783319568287
-
相關分類:
Algorithms-data-structures、機率統計學 Probability-and-statistics
海外代購書籍(需單獨結帳)
相關主題
商品描述
This valuable source for graduate students and researchers provides a comprehensive introduction to current theories and applications in optimization methods and network models. Contributions to this book are focused on new efficient algorithms and rigorous mathematical theories, which can be used to optimize and analyze mathematical graph structures with massive size and high density induced by natural or artificial complex networks. Applications to social networks, power transmission grids, telecommunication networks, stock market networks, and human brain networks are presented.
Chapters in this book cover the following topics:
- Linear max min fairness
- Heuristic approaches for high-quality solutions
- Efficient approaches for complex multi-criteria optimization problems
- Comparison of heuristic algorithms
- New heuristic iterative local search
- Power in network structures
- Clustering nodes in random graphs
- Power transmission grid structure
- Network decomposition problems
- Homogeneity hypothesis testing
- Network analysis of international migration
- Social networks with node attributes
- Testing hypothesis on degree distribution in the market graphs
- Machine learning applications to human brain network studies
This proceeding is a result of The 6th International Conference on Network Analysis held at the Higher School of Economics, Nizhny Novgorod in May 2016. The conference brought together scientists and engineers from industry, government, and academia to discuss the links between network analysis and a variety of fields.
商品描述(中文翻譯)
這本書是為研究生和研究人員提供的寶貴資源,全面介紹了最新的優化方法和網絡模型的應用理論。本書的貢獻主要集中在新的高效算法和嚴謹的數學理論上,這些理論可以用來優化和分析由自然或人工複雜網絡引起的大規模和高密度的數學圖結構。書中還介紹了在社交網絡、電力傳輸網絡、電信網絡、股票市場網絡和人腦網絡等領域的應用。
本書的章節涵蓋以下主題:
- 線性最大最小公平性
- 启发式方法用於高質量解決方案
- 複雜多準則優化問題的高效方法
- 启发式算法的比較
- 新的启发式迭代局部搜索
- 網絡結構中的能量
- 隨機圖中的節點聚類
- 電力傳輸網絡結構
- 網絡分解問題
- 同質性假設檢驗
- 國際移民的網絡分析
- 帶有節點屬性的社交網絡
- 市場圖中度分佈的假設檢驗
- 機器學習在人腦網絡研究中的應用
這本書是2016年5月在俄羅斯尼日尼諾夫格勒高等經濟學院舉辦的第六屆國際網絡分析會議的成果。該會議匯集了來自工業、政府和學術界的科學家和工程師,討論了網絡分析與各個領域之間的聯繫。