Time-Series Prediction and Applications: A Machine Intelligence Approach (Intelligent Systems Reference Library)
暫譯: 時間序列預測與應用:機器智能方法(智能系統參考圖書館)
Amit Konar, Diptendu Bhattacharya
- 出版商: Springer
- 出版日期: 2017-04-03
- 售價: $7,100
- 貴賓價: 9.5 折 $6,745
- 語言: 英文
- 頁數: 242
- 裝訂: Hardcover
- ISBN: 3319545965
- ISBN-13: 9783319545967
海外代購書籍(需單獨結帳)
相關主題
商品描述
This book presents machine learning and type-2 fuzzy sets for the prediction of time-series with a particular focus on business forecasting applications. It also proposes new uncertainty management techniques in an economic time-series using type-2 fuzzy sets for prediction of the time-series at a given time point from its preceding value in fluctuating business environments. It employs machine learning to determine repetitively occurring similar structural patterns in the time-series and uses stochastic automaton to predict the most probabilistic structure at a given partition of the time-series. Such predictions help in determining probabilistic moves in a stock index time-series
Primarily written for graduate students and researchers in computer science, the book is equally useful for researchers/professionals in business intelligence and stock index prediction. A background of undergraduate level mathematics is presumed, although not mandatory, for most of the sections. Exercises with tips are provided at the end of each chapter to the readers’ ability and understanding of the topics covered.商品描述(中文翻譯)
本書介紹了機器學習和二型模糊集在時間序列預測中的應用,特別著重於商業預測應用。它還提出了在經濟時間序列中使用二型模糊集進行不確定性管理的新技術,以預測在波動的商業環境中,某一時間點的時間序列值與其前一值之間的關係。本書利用機器學習來確定時間序列中重複出現的相似結構模式,並使用隨機自動機來預測在時間序列的特定區間內最有可能的結構。這些預測有助於確定股票指數時間序列中的概率變動。
本書主要為計算機科學的研究生和研究人員撰寫,對於商業智慧和股票指數預測的研究人員/專業人士同樣有用。雖然大多數章節假設讀者具備本科水平的數學基礎,但這並非強制要求。每章末尾提供了與讀者能力和理解主題相關的練習題及提示。