Transparent Data Mining for Big and Small Data (Studies in Big Data)

  • 出版商: Springer
  • 出版日期: 2017-05-15
  • 售價: $6,270
  • 貴賓價: 9.5$5,957
  • 語言: 英文
  • 頁數: 215
  • 裝訂: Hardcover
  • ISBN: 3319540238
  • ISBN-13: 9783319540238
  • 相關分類: 大數據 Big-dataData-mining
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

This book focuses on new and emerging data mining solutions that offer a greater level of transparency than existing solutions. Transparent data mining solutions with desirable properties (e.g. effective, fully automatic, scalable) are covered in the book. Experimental findings of transparent solutions are tailored to different domain experts, and experimental metrics for evaluating algorithmic transparency are presented. The book also discusses societal effects of black box vs. transparent approaches to data mining, as well as real-world use cases for these approaches.
As algorithms increasingly support different aspects of modern life, a greater level of transparency is sorely needed, not least because discrimination and biases have to be avoided. With contributions from domain experts, this book provides an overview of an emerging area of data mining that has profound societal consequences, and provides the technical background to for readers to contribute to the field or to put existing approaches to practical use.

商品描述(中文翻譯)

本書專注於新興的資料挖掘解決方案,這些解決方案提供比現有解決方案更高的透明度。本書涵蓋了具有理想特性的透明資料挖掘解決方案(例如:有效、完全自動化、可擴展)。透明解決方案的實驗結果針對不同領域的專家進行調整,並提出了評估演算法透明度的實驗指標。本書還討論了黑箱與透明資料挖掘方法的社會影響,以及這些方法的實際應用案例。

隨著演算法越來越多地支持現代生活的不同方面,迫切需要更高的透明度,尤其是因為必須避免歧視和偏見。本書由領域專家貢獻,提供了一個新興資料挖掘領域的概述,該領域對社會有深遠的影響,並提供了技術背景,讓讀者能夠為該領域做出貢獻或將現有方法付諸實踐。