Achieving Consensus in Robot Swarms: Design and Analysis of Strategies for the best-of-n Problem (Studies in Computational Intelligence)
暫譯: 在機器人群體中達成共識:最佳選擇問題的策略設計與分析(計算智慧研究)

Gabriele Valentini

  • 出版商: Springer
  • 出版日期: 2017-02-22
  • 售價: $5,220
  • 貴賓價: 9.5$4,959
  • 語言: 英文
  • 頁數: 146
  • 裝訂: Hardcover
  • ISBN: 3319536087
  • ISBN-13: 9783319536088
  • 相關分類: 機器人製作 Robots
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

This book focuses on the design and analysis of collective decision-making strategies for the best-of-n problem. After providing a formalization of the structure of the best-of-n problem supported by a comprehensive survey of the swarm robotics literature, it introduces the functioning of a collective decision-making strategy and identifies a set of mechanisms that are essential for a strategy to solve the best-of-n problem. The best-of-n problem is an abstraction that captures the frequent requirement of a robot swarm to choose one option from of a finite set when optimizing benefits and costs. The book leverages the identification of these mechanisms to develop a modular and model-driven methodology to design collective decision-making strategies and to analyze their performance at different level of abstractions. Lastly, the author provides a series of case studies in which the proposed methodology is used to design different strategies, using robot experiments to show how the designed strategies can be ported to different application scenarios.

商品描述(中文翻譯)

本書專注於最佳選擇問題(best-of-n problem)的集體決策策略的設計與分析。在提供最佳選擇問題結構的形式化定義後,並輔以對群體機器人文獻的全面調查,本書介紹了集體決策策略的運作方式,並識別出一組對於解決最佳選擇問題至關重要的機制。最佳選擇問題是一種抽象概念,捕捉了機器人群體在優化利益與成本時,從有限選項中選擇一個選項的頻繁需求。本書利用這些機制的識別,發展出一種模組化和模型驅動的方法論,以設計集體決策策略並分析其在不同抽象層次下的性能。最後,作者提供了一系列案例研究,展示所提方法論如何用於設計不同的策略,並通過機器人實驗顯示所設計的策略如何能夠移植到不同的應用場景中。