Combinatorics and Complexity of Partition Functions (Algorithms and Combinatorics)
暫譯: 分割函數的組合數學與複雜度(演算法與組合數學)

Alexander Barvinok

  • 出版商: Springer
  • 出版日期: 2017-03-21
  • 售價: $5,640
  • 貴賓價: 9.5$5,358
  • 語言: 英文
  • 頁數: 303
  • 裝訂: Hardcover
  • ISBN: 3319518283
  • ISBN-13: 9783319518282
  • 相關分類: Algorithms-data-structures
  • 海外代購書籍(需單獨結帳)

商品描述

Partition functions arise in combinatorics and related problems of statistical physics as they encode in a succinct way the combinatorial  structure of complicated systems. The main focus of the book is on efficient ways to compute (approximate) various partition functions, such as permanents, hafnians and their higher-dimensional versions, graph and hypergraph matching polynomials, the independence polynomial of a graph and partition functions enumerating 0-1 and integer points in polyhedra, which allows one to make algorithmic advances in otherwise intractable problems. 

The book unifies various, often quite recent, results scattered in the literature, concentrating on the three main approaches: scaling, interpolation and correlation decay. The prerequisites include moderate amounts of real and complex analysis and linear algebra, making the book accessible to advanced math and physics undergraduates. 

商品描述(中文翻譯)

分割函數在組合數學和統計物理的相關問題中出現,因為它們以簡潔的方式編碼了複雜系統的組合結構。本書的主要重點是高效計算(近似)各種分割函數的方法,例如永久(permanents)、哈夫尼安(hafnians)及其高維版本、圖形和超圖的匹配多項式、圖的獨立多項式,以及計算多面體中 0-1 和整數點的分割函數,這使得在其他無法處理的問題中能夠實現算法上的進展。

本書統一了文獻中散佈的各種,通常相當近期的結果,集中於三種主要方法:縮放(scaling)、插值(interpolation)和相關衰減(correlation decay)。所需的先備知識包括適量的實分析和複分析以及線性代數,使得本書對於高年級數學和物理本科生來說是可接觸的。