The Rise of Big Spatial Data (Lecture Notes in Geoinformation and Cartography)
暫譯: 大空間數據的崛起(地理資訊與製圖講義)

  • 出版商: Springer
  • 出版日期: 2016-10-15
  • 售價: $9,810
  • 貴賓價: 9.5$9,320
  • 語言: 英文
  • 頁數: 408
  • 裝訂: Hardcover
  • ISBN: 3319451227
  • ISBN-13: 9783319451220
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

This edited volume gathers the proceedings of the Symposium GIS Ostrava 2016, the Rise of Big Spatial Data, held at the Technical University of Ostrava, Czech Republic, March 16–18, 2016. Combining theoretical papers and applications by authors from around the globe, it summarises the latest research findings in the area of big spatial data and key problems related to its utilisation.

Welcome to dawn of the big data era: though it’s in sight, it isn’t quite here yet. Big spatial data is characterised by three main features: volume beyond the limit of usual geo-processing, velocity higher than that available using conventional processes, and variety, combining more diverse geodata sources than usual. The popular term denotes a situation in which one or more of these key properties reaches a point at which traditional methods for geodata collection, storage, processing, control, analysis, modelling, validation and visualisation fail to provide effective solutions.

>Entering the era of big spatial data calls for finding solutions that address all “small data” issues that soon create “big data” troubles. Resilience for big spatial data means solving the heterogeneity of spatial data sources (in topics, purpose, completeness, guarantee, licensing, coverage etc.), large volumes (from gigabytes to terabytes and more), undue complexity of geo-applications and systems (i.e. combination of standalone applications with web services, mobile platforms and sensor networks), neglected automation of geodata preparation (i.e. harmonisation, fusion), insufficient control of geodata collection and distribution processes (i.e. scarcity and poor quality of metadata and metadata systems), limited analytical tool capacity (i.e. domination of traditional causal-driven analysis), low visual system performance, inefficient knowledge-discovery techniques (for transformation of vast amounts of information into tiny and essential outputs) and much more. These trends are accelerating as sensors become more ubiquitous around the world.

商品描述(中文翻譯)

本編輯書籍匯集了2016年3月16日至18日在捷克共和國奧斯特拉瓦科技大學舉行的研討會「GIS Ostrava 2016:大空間數據的崛起」的會議紀錄。這本書結合了來自全球的作者所撰寫的理論論文和應用案例,總結了大空間數據領域的最新研究成果及其應用相關的關鍵問題。

歡迎來到大數據時代的曙光:雖然它已經在視野中,但尚未完全到來。大空間數據的特徵主要有三個:超過常規地理處理的數據量、比傳統過程更高的處理速度,以及結合比以往更為多樣的地理數據來源的多樣性。這個流行的術語指的是一種情況,其中一個或多個關鍵特性達到一個點,傳統的地理數據收集、存儲、處理、控制、分析、建模、驗證和可視化方法無法提供有效的解決方案。

進入大空間數據時代需要尋找解決方案,以應對所有「小數據」問題,這些問題很快會造成「大數據」困擾。大空間數據的韌性意味著解決空間數據來源的異質性(在主題、目的、完整性、保證、授權、覆蓋範圍等方面)、大數據量(從千兆字節到太字節及以上)、地理應用和系統的過度複雜性(即獨立應用程序與網絡服務、移動平台和傳感器網絡的組合)、被忽視的地理數據準備自動化(即協調、融合)、對地理數據收集和分發過程的控制不足(即元數據和元數據系統的稀缺和質量差)、分析工具能力有限(即傳統因果驅動分析的主導)、可視系統性能低下、知識發現技術效率低下(將大量信息轉化為微小且重要的輸出)等問題。隨著傳感器在全球變得越來越普及,這些趨勢正在加速發展。