Matrix and Tensor Factorization Techniques for Recommender Systems (SpringerBriefs in Computer Science)
Panagiotis Symeonidis
- 出版商: Springer
- 出版日期: 2017-02-06
- 售價: $3,300
- 貴賓價: 9.5 折 $3,135
- 語言: 英文
- 頁數: 108
- 裝訂: Paperback
- ISBN: 3319413562
- ISBN-13: 9783319413563
-
相關分類:
推薦系統、Computer-Science
海外代購書籍(需單獨結帳)
相關主題
商品描述
This book presents the algorithms used to provide recommendations by exploiting matrix factorization and tensor decomposition techniques. It highlights well-known decomposition methods for recommender systems, such as Singular Value Decomposition (SVD), UV-decomposition, Non-negative Matrix Factorization (NMF), etc. and describes in detail the pros and cons of each method for matrices and tensors. This book provides a detailed theoretical mathematical background of matrix/tensor factorization techniques and a step-by-step analysis of each method on the basis of an integrated toy example that runs throughout all its chapters and helps the reader to understand the key differences among methods. It also contains two chapters, where different matrix and tensor methods are compared experimentally on real data sets, such as Epinions, GeoSocialRec, Last.fm, BibSonomy, etc. and provides further insights into the advantages and disadvantages of each method.
The book offers a rich blend of theory and practice, making it suitable for students, researchers and practitioners interested in both recommenders and factorization methods. Lecturers can also use it for classes on data mining, recommender systems and dimensionality reduction methods.
商品描述(中文翻譯)
本書介紹了利用矩陣分解和張量分解技術提供推薦的演算法。它突顯了推薦系統中一些知名的分解方法,如奇異值分解(Singular Value Decomposition, SVD)、UV分解、非負矩陣分解(Non-negative Matrix Factorization, NMF)等,並詳細描述了每種方法在矩陣和張量上的優缺點。本書提供了矩陣/張量分解技術的詳細理論數學背景,以及基於一個貫穿全書的綜合範例的逐步分析,幫助讀者理解各種方法之間的關鍵差異。書中還包含兩章,對不同的矩陣和張量方法在真實數據集(如Epinions、GeoSocialRec、Last.fm、BibSonomy等)上進行實驗比較,並進一步深入探討每種方法的優缺點。
本書理論與實踐相結合,適合對推薦系統和分解方法感興趣的學生、研究人員和實務工作者。講師也可以將其用於數據挖掘、推薦系統和降維方法的課程中。