Bayesian Nonparametric Data Analysis (Springer Series in Statistics)
暫譯: 貝葉斯非參數數據分析(施普林格統計系列)

Peter Müller

相關主題

商品描述

This book reviews nonparametric Bayesian methods and models that have proven useful in the context of data analysis. Rather than providing an encyclopedic review of probability models, the book’s structure follows a data analysis perspective. As such, the chapters are organized by traditional data analysis problems. In selecting specific nonparametric models, simpler and more traditional models are favored over specialized ones.

The discussed methods are illustrated with a wealth of examples, including applications ranging from stylized examples to case studies from recent literature. The book also includes an extensive discussion of computational methods and details on their implementation. R code for many examples is included in online software pages.

商品描述(中文翻譯)

本書回顧了在數據分析中被證明有用的非參數貝葉斯方法和模型。與其提供概率模型的百科全書式回顧,本書的結構遵循數據分析的視角。因此,各章節是根據傳統的數據分析問題進行組織。在選擇特定的非參數模型時,更傾向於簡單且傳統的模型,而非專門化的模型。

所討論的方法通過大量範例進行說明,包括從風格化範例到近期文獻中的案例研究等應用。本書還包括對計算方法的廣泛討論以及其實現的詳細資訊。許多範例的 R 代碼已包含在線上軟體頁面中。