Bayesian Nonparametric Data Analysis (Springer Series in Statistics)
Peter Müller
- 出版商: Springer
- 出版日期: 2016-10-15
- 售價: $4,800
- 貴賓價: 9.5 折 $4,560
- 語言: 英文
- 頁數: 208
- 裝訂: Paperback
- ISBN: 3319368427
- ISBN-13: 9783319368429
-
相關分類:
Data Science、機率統計學 Probability-and-statistics
海外代購書籍(需單獨結帳)
相關主題
商品描述
This book reviews nonparametric Bayesian methods and models that have proven useful in the context of data analysis. Rather than providing an encyclopedic review of probability models, the book’s structure follows a data analysis perspective. As such, the chapters are organized by traditional data analysis problems. In selecting specific nonparametric models, simpler and more traditional models are favored over specialized ones.
The discussed methods are illustrated with a wealth of examples, including applications ranging from stylized examples to case studies from recent literature. The book also includes an extensive discussion of computational methods and details on their implementation. R code for many examples is included in online software pages.
商品描述(中文翻譯)
本書回顧了在數據分析背景下被證明有用的非參數貝葉斯方法和模型。與提供概率模型的百科全書式評論不同,本書的結構遵循數據分析的角度。因此,各章節按照傳統的數據分析問題進行組織。在選擇具體的非參數模型時,更簡單和傳統的模型優先於專門的模型。
討論的方法通過豐富的例子進行了說明,包括從簡化的例子到最近文獻中的案例研究的應用。本書還包括對計算方法的廣泛討論以及有關其實施的詳細信息。許多例子的 R 代碼包含在線上軟件頁面中。