Blind Image Deconvolution: Methods and Convergence
暫譯: 盲目影像去卷積:方法與收斂性

Subhasis Chaudhuri, Rajbabu Velmurugan, Renu Rameshan

  • 出版商: Springer
  • 出版日期: 2016-09-22
  • 售價: $2,430
  • 貴賓價: 9.5$2,309
  • 語言: 英文
  • 頁數: 151
  • 裝訂: Paperback
  • ISBN: 3319352164
  • ISBN-13: 9783319352169
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Blind deconvolution is a classical image processing problem which has been investigated by a large number of researchers over the last four decades. The purpose of this monograph is not to propose yet another method for blind image restoration. Rather the basic issue of deconvolvability has been explored from a theoretical view point. Some authors claim very good results while quite a few claim that blind restoration does not work. The authors clearly detail when such methods are expected to work and when they will not.

In order to avoid the assumptions needed for convergence analysis in the Fourier domain, the authors use a general method of convergence analysis used for alternate minimization based on three point and four point properties of the points in the image space. The authors prove that all points in the image space satisfy the three point property and also derive the conditions under which four point property is satisfied. This provides the conditions under which alternate minimization for blind deconvolution converges with a quadratic prior.

Since the convergence properties depend on the chosen priors, one should design priors that avoid trivial solutions. Hence, a sparsity based solution is also provided for blind deconvolution, by using image priors having a cost that increases with the amount of blur, which is another way to prevent trivial solutions in joint estimation. This book will be a highly useful resource to the researchers and academicians in the specific area of blind deconvolution.

商品描述(中文翻譯)

盲去卷積是一個經典的影像處理問題,過去四十年來已經有大量研究者對其進行了探討。本專著的目的並不是提出另一種盲影像修復的方法,而是從理論的角度探討去卷積的基本問題。一些作者聲稱取得了非常好的結果,而相當多的作者則聲稱盲修復無法奏效。作者清楚地詳細說明了這些方法何時預期能夠有效,何時則無法有效。

為了避免在傅立葉域中進行收斂分析所需的假設,作者使用了一種基於影像空間中三點和四點性質的交替最小化的一般收斂分析方法。作者證明了影像空間中的所有點都滿足三點性質,並推導出滿足四點性質的條件。這提供了在具有二次先驗的情況下,盲去卷積的交替最小化收斂的條件。

由於收斂性質依賴於所選擇的先驗,因此應設計避免平凡解的先驗。因此,針對盲去卷積,還提供了一種基於稀疏性的解決方案,通過使用隨著模糊程度增加而成本上升的影像先驗,這是防止聯合估計中平凡解的另一種方法。本書將成為盲去卷積特定領域的研究者和學者們非常有用的資源。