Feature Selection for High-Dimensional Data (Artificial Intelligence: Foundations, Theory, and Algorithms)
Verónica Bolón-Canedo, Noelia Sánchez-Maroño, Amparo Alonso-Betanzos
- 出版商: Springer
- 出版日期: 2015-10-14
- 售價: $2,370
- 貴賓價: 9.5 折 $2,252
- 語言: 英文
- 頁數: 147
- 裝訂: Hardcover
- ISBN: 3319218573
- ISBN-13: 9783319218571
-
相關分類:
人工智慧、Algorithms-data-structures
海外代購書籍(需單獨結帳)
相關主題
商品描述
This book offers a coherent and comprehensive approach to feature subset selection in the scope of classification problems, explaining the foundations, real application problems and the challenges of feature selection for high-dimensional data.
The authors first focus on the analysis and synthesis of feature selection algorithms, presenting a comprehensive review of basic concepts and experimental results of the most well-known algorithms.
They then address different real scenarios with high-dimensional data, showing the use of feature selection algorithms in different contexts with different requirements and information: microarray data, intrusion detection, tear film lipid layer classification and cost-based features. The book then delves into the scenario of big dimension, paying attention to important problems under high-dimensional spaces, such as scalability, distributed processing and real-time processing, scenarios that open up new and interesting challenges for researchers.
The book is useful for practitioners, researchers and graduate students in the areas of machine learning and data mining.
商品描述(中文翻譯)
本書提供了一個連貫且全面的方法,針對分類問題中的特徵子集選擇進行探討,解釋了基礎知識、實際應用問題以及高維數據特徵選擇所面臨的挑戰。
作者首先專注於特徵選擇演算法的分析與綜合,對最知名演算法的基本概念和實驗結果進行了全面的回顧。
接著,他們針對不同的高維數據實際場景進行探討,展示了特徵選擇演算法在不同背景下的應用,這些背景具有不同的需求和資訊,包括微陣列數據、入侵檢測、淚膜脂質層分類以及基於成本的特徵。本書隨後深入探討大維度的場景,關注高維空間下的重要問題,如可擴展性、分散式處理和即時處理,這些場景為研究人員開啟了新的有趣挑戰。
本書對於機器學習和數據挖掘領域的實務工作者、研究人員及研究生都具有實用價值。