Model-Based Processing for Underwater Acoustic Arrays (SpringerBriefs in Physics)
暫譯: 基於模型的水下聲學陣列處理 (SpringerBriefs in Physics)

Edmund J. Sullivan

  • 出版商: Springer
  • 出版日期: 2015-06-09
  • 售價: $3,180
  • 貴賓價: 9.5$3,021
  • 語言: 英文
  • 頁數: 124
  • 裝訂: Paperback
  • ISBN: 3319175564
  • ISBN-13: 9783319175560
  • 相關分類: 物理學 Physics
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

This monograph presents a unified approach to model-based processing for underwater acoustic arrays. The use of physical models in passive array processing is not a new idea, but it has been used on a case-by-case basis, and as such, lacks any unifying structure. This work views all such processing methods as estimation procedures, which then can be unified by treating them all as a form of joint estimation based on a Kalman-type recursive processor, which can be recursive either in space or time, depending on the application. This is done for three reasons. First, the Kalman filter provides a natural framework for the inclusion of physical models in a processing scheme. Second, it allows poorly known model parameters to be jointly estimated along with the quantities of interest. This is important, since in certain areas of array processing already in use, such as those based on matched-field processing, the so-called mismatch problem either degrades performance or, indeed, prevents any solution at all. Thirdly, such a unification provides a formal means of quantifying the performance improvement. The term model-based will be strictly defined as the use of physics-based models as a means of introducing a priori information. This leads naturally to viewing the method as a Bayesian processor. Short expositions of estimation theory and acoustic array theory are presented, followed by a presentation of the Kalman filter in its recursive estimator form. Examples of applications to localization, bearing estimation, range estimation and model parameter estimation are provided along with experimental results verifying the method. The book is sufficiently self-contained to serve as a guide for the application of model-based array processing for the practicing engineer.

商品描述(中文翻譯)

這本專著提出了一種統一的模型基礎處理方法,適用於水下聲學陣列。雖然在被動陣列處理中使用物理模型並不是一個新想法,但它一直是根據具體情況使用,因此缺乏任何統一的結構。本研究將所有這類處理方法視為估計程序,然後通過將它們視為基於卡爾曼型遞歸處理器的聯合估計形式來統一,這種處理器可以根據應用在空間或時間上進行遞歸。這樣做有三個原因。首先,卡爾曼濾波器為在處理方案中納入物理模型提供了一個自然的框架。其次,它允許將不太清楚的模型參數與感興趣的量一起進行聯合估計。這一點很重要,因為在某些已經使用的陣列處理領域,例如基於匹配場處理的領域,所謂的失配問題要麼降低性能,要麼確實完全阻止任何解決方案。第三,這種統一提供了一種正式的手段來量化性能的改善。模型基礎的術語將被嚴格定義為使用基於物理的模型作為引入信息的手段。這自然導致將該方法視為貝葉斯處理器。文中簡要介紹了估計理論和聲學陣列理論,隨後介紹了卡爾曼濾波器的遞歸估計器形式。提供了定位、方位估計、距離估計和模型參數估計的應用示例,以及驗證該方法的實驗結果。這本書內容足夠自成體系,可以作為實踐工程師應用模型基礎陣列處理的指南。