Advanced Methods in the Fractional Calculus of Variations (SpringerBriefs in Applied Sciences and Technology)
暫譯: 變分分數微積分的進階方法 (SpringerBriefs in Applied Sciences and Technology)
Agnieszka B. Malinowska
- 出版商: Springer
- 出版日期: 2015-03-06
- 售價: $2,420
- 貴賓價: 9.5 折 $2,299
- 語言: 英文
- 頁數: 148
- 裝訂: Paperback
- ISBN: 3319147552
- ISBN-13: 9783319147550
-
相關分類:
微積分 Calculus
海外代購書籍(需單獨結帳)
相關主題
商品描述
This brief presents a general unifying perspective on the fractional calculus. It brings together results of several recent approaches in generalizing the least action principle and the Euler–Lagrange equations to include fractional derivatives.
The dependence of Lagrangians on generalized fractional operators as well as on classical derivatives is considered along with still more general problems in which integer-order integrals are replaced by fractional integrals. General theorems are obtained for several types of variational problems for which recent results developed in the literature can be obtained as special cases. In particular, the authors offer necessary optimality conditions of Euler–Lagrange type for the fundamental and isoperimetric problems, transversality conditions, and Noether symmetry theorems. The existence of solutions is demonstrated under Tonelli type conditions. The results are used to prove the existence of eigenvalues and corresponding orthogonal eigenfunctions of fractional Sturm–Liouville problems.
Advanced Methods in the Fractional Calculus of Variations is a self-contained text which will be useful for graduate students wishing to learn about fractional-order systems. The detailed explanations will interest researchers with backgrounds in applied mathematics, control and optimization as well as in certain areas of physics and engineering.
商品描述(中文翻譯)
這篇簡介提供了對分數微積分的一般統一觀點。它將幾種最近的研究成果結合在一起,這些成果在將最小作用原理和歐拉-拉格朗日方程推廣到包括分數導數的情況下進行了探討。
考慮了拉格朗日函數對於廣義分數運算子以及對於經典導數的依賴,還有更一般的問題,其中整數階的積分被分數階的積分所取代。對於幾種類型的變分問題獲得了一般定理,這些問題的最近研究成果可以作為特例來獲得。特別地,作者提供了基本問題和等周問題的歐拉-拉格朗日型必要最優條件、橫斷條件以及諾特對稱定理。在托內利類型條件下證明了解的存在性。這些結果被用來證明分數斯圖姆-柳維爾問題的特徵值及其對應的正交特徵函數的存在性。
《變分的分數微積分進階方法》是一本自成體系的教材,對於希望了解分數階系統的研究生將會非常有用。詳細的解釋將吸引具有應用數學、控制與優化背景的研究人員,以及某些物理和工程領域的研究者。