Finite Volumes for Complex Applications VII-Elliptic, Parabolic and Hyperbolic Problems: FVCA 7, Berlin, June 2014 (Springer Proceedings in Mathematics & Statistics) (複雜應用的有限體積方法 VII:橢圓、拋物線與雙曲問題:FVCA 7,柏林,2014年6月(施普林格數學與統計系列會議論文))
- 出版商: Springer
- 出版日期: 2014-06-03
- 售價: $6,760
- 貴賓價: 9.5 折 $6,422
- 語言: 英文
- 頁數: 518
- 裝訂: Hardcover
- ISBN: 3319055909
- ISBN-13: 9783319055909
-
相關分類:
機率統計學 Probability-and-statistics
海外代購書籍(需單獨結帳)
相關主題
商品描述
The methods considered in the 7th conference on "Finite Volumes for Complex Applications" (Berlin, June 2014) have properties which offer distinct advantages for a number of applications. The second volume of the proceedings covers reviewed contributions reporting successful applications in the fields of fluid dynamics, magnetohydrodynamics, structural analysis, nuclear physics, semiconductor theory and other topics.
The finite volume method in its various forms is a space discretization technique for partial differential equations based on the fundamental physical principle of conservation. Recent decades have brought significant success in the theoretical understanding of the method. Many finite volume methods preserve further qualitative or asymptotic properties, including maximum principles, dissipativity, monotone decay of free energy, and asymptotic stability. Due to these properties, finite volume methods belong to the wider class of compatible discretization methods, which preserve qualitative properties of continuous problems at the discrete level. This structural approach to the discretization of partial differential equations becomes particularly important for multiphysics and multiscale applications.
Researchers, PhD and masters level students in numerical analysis, scientific computing and related fields such as partial differential equations will find this volume useful, as will engineers working in numerical modeling and simulations.
商品描述(中文翻譯)
在2014年6月於柏林舉行的第七屆「複雜應用的有限體積」會議中所考慮的方法具有一些特性,為多個應用提供了明顯的優勢。會議論文集的第二卷涵蓋了經過審核的貢獻,報告了在流體力學、磁流體力學、結構分析、核物理、半導體理論及其他主題中的成功應用。
有限體積方法以其各種形式,是一種基於保守的基本物理原則的偏微分方程的空間離散化技術。近幾十年來,該方法的理論理解取得了顯著的成功。許多有限體積方法保留了進一步的定性或漸近性質,包括最大原則、耗散性、自由能的單調衰減以及漸近穩定性。由於這些特性,有限體積方法屬於更廣泛的相容離散化方法類別,這些方法在離散層面上保留了連續問題的定性特性。這種對偏微分方程離散化的結構性方法對於多物理場和多尺度應用尤為重要。
從事數值分析、科學計算及相關領域(如偏微分方程)的研究人員、博士及碩士生,以及從事數值建模和模擬的工程師,將會發現這一卷的內容非常有用。