Fundamentals of Bioinformatics and Computational Biology: Methods and Exercises in MATLAB (生物資訊學與計算生物學基礎:MATLAB 方法與練習)
Singh, Gautam B.
- 出版商: Springer
- 出版日期: 2025-02-14
- 售價: $4,030
- 貴賓價: 9.5 折 $3,829
- 語言: 英文
- 頁數: 490
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 3031756932
- ISBN-13: 9783031756931
-
相關分類:
Matlab、生物資訊 Bioinformatics
尚未上市,無法訂購
相關主題
商品描述
This book comprehensively covers all the core bioinformatics topics and includes practical examples completed using the MATLAB bioinformatics and machine learning toolboxes(TM). It is primarily intended as a textbook for engineering and computer science students attending advanced undergraduate and graduate courses in bioinformatics and computational biology. The book develops bioinformatics concepts from the ground up, starting with an introductory chapter on molecular biology and genetics to enable physical science students to appreciate the challenges in biological data management, sequence analysis, and systems biology. The book is divided into five parts. The first one includes a survey of existing biological databases and tools that have become essential in today's biotechnology research. The second part covers methodologies for retrieving biological information, including fundamental algorithms for sequence comparison, scoring, and determining evolutionary distance. The third part of the book focuses on modeling biological sequences and patterns as Markov chains, covering core principles for analyzing and searching for sequences of significant motifs and biomarkers and developing stochastic ergodic hidden Markov models for biological sequence families. The fourth one is dedicated to systems biology and covers phylogenetic analysis and evolutionary tree computations, as well as gene expression analysis with microarrays. In turn, the last part of the book includes an introduction to machine-learning algorithms for bioinformatics and outlines strategies for developing intelligent diagnostic machine-learning applications, RNA sequence data, and deep learning systems for mass spectrometry data. All in all, this book offers a unique hands-on reference guide to bioinformatics and computational biology. This second edition has been updated to cover additional and most recent databases, and machine learning and deep learning applications in RNA sequence and mass-spectrometry data analysis. Moreover, it presents significant enhancements to the chapter dedicated to microarray analysis, and more practical examples, with additional end-of-chapter problems.
商品描述(中文翻譯)
本書全面涵蓋所有核心的生物資訊學主題,並包含使用 MATLAB 生物資訊學和機器學習工具箱(TM) 完成的實際範例。它主要作為工程和計算機科學學生在生物資訊學和計算生物學的高級本科及研究生課程中的教科書。書中從基礎開始發展生物資訊學概念,首先介紹分子生物學和遺傳學的章節,以使物理科學學生能夠理解生物數據管理、序列分析和系統生物學中的挑戰。本書分為五個部分。第一部分包括對現有生物數據庫和工具的調查,這些工具在當今的生物技術研究中已變得不可或缺。第二部分涵蓋檢索生物信息的方法,包括序列比較、評分和確定進化距離的基本算法。第三部分專注於將生物序列和模式建模為馬可夫鏈,涵蓋分析和搜索顯著基序和生物標記序列的核心原則,以及為生物序列家族開發隨機遍歷隱馬可夫模型。第四部分專門介紹系統生物學,涵蓋系統發育分析和進化樹計算,以及使用微陣列的基因表達分析。最後一部分則介紹生物資訊學中的機器學習算法,並概述開發智能診斷機器學習應用、RNA 序列數據和質譜數據的深度學習系統的策略。總的來說,本書提供了一本獨特的生物資訊學和計算生物學的實用參考指南。本書的第二版已更新,以涵蓋更多最新的數據庫,以及 RNA 序列和質譜數據分析中的機器學習和深度學習應用。此外,還對專門介紹微陣列分析的章節進行了重大增強,並增加了更多實際範例和章末問題。
作者簡介
Gautam B. Singh is professor in the Department of Computer Science and Engineering, at Oakland University, Rochester, USA.
作者簡介(中文翻譯)
Gautam B. Singh 是美國羅徹斯特奧克蘭大學計算機科學與工程系的教授。