Multi-Valued Logic for Decision-Making Under Uncertainty
暫譯: 不確定性下的多值邏輯決策
Kagan, Evgeny, Rybalov, Alexander, Yager, Ronald
- 出版商: Springer
- 出版日期: 2025-02-18
- 售價: $7,780
- 貴賓價: 9.5 折 $7,391
- 語言: 英文
- 頁數: 194
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 3031747615
- ISBN-13: 9783031747618
海外代購書籍(需單獨結帳)
商品描述
Multi-valued and fuzzy logics provide mathematical and computational tools for handling imperfect information and decision-making with rational collective reasoning and irrational individual judgements.
The suggested implementation of multi-valued logics is based on the uninorm and absorbing norm with generating functions defined by probability distributions. Natural extensions of these logics result in non-commutative and non-distributive logics. In addition to Boolean truth values, these logics handle subjective truth and false values and model irrational decisions. Dynamics of decision-making are specified by the subjective Markov process and learning - by neural network with extended Tsetlin neurons. Application of the suggested methods is illustrated by modelling of irrational economic decisions and biased reasoning in the wisdom-of-the-crowd method, and by control of mobile robots and navigation of their groups.
Topics and features:
- Bridges the gap between fuzzy and probability methods
- Includes examples in the field of machine-learning and robots' control
- Defines formal models of subjective judgements and decision-making
- Presents practical techniques for solving non-probabilistic decision-making problems
- Initiates further research in non-commutative and non-distributive logics
The book forms a basis for theoretical studies and practice of decision-making under uncertainty and will be useful for computer scientists and mathematicians interested in multi-valued and fuzzy logic, as well as for engineers working in the field of data mining and data analysis.
商品描述(中文翻譯)
多值邏輯和模糊邏輯提供了數學和計算工具,用於處理不完美的信息和決策,結合理性的集體推理和非理性的個人判斷。
所建議的多值邏輯實現基於無單元(uninorm)和吸收範數(absorbing norm),其生成函數由概率分佈定義。這些邏輯的自然擴展導致非交換(non-commutative)和非分配(non-distributive)邏輯。除了布爾真值(Boolean truth values)之外,這些邏輯還處理主觀的真和假值,並模擬非理性的決策。決策的動態由主觀馬可夫過程(subjective Markov process)指定,而學習則由擴展的Tsetlin神經元(Tsetlin neurons)所構成的神經網絡進行。所建議方法的應用通過模擬非理性的經濟決策和在群眾智慧方法中的偏見推理,以及對移動機器人及其群體的導航控制來進行說明。
主題和特點:
- 橋接模糊方法和概率方法之間的差距
- 包含機器學習和機器人控制領域的範例
- 定義主觀判斷和決策的正式模型
- 提供解決非概率決策問題的實用技術
- 開啟非交換和非分配邏輯的進一步研究
本書為不確定性下的決策理論研究和實踐奠定了基礎,對於對多值邏輯和模糊邏輯感興趣的計算機科學家和數學家,以及在數據挖掘和數據分析領域工作的工程師將會非常有用。
作者簡介
Dr. Evgeny Kagan is with the Faculty of Engineering, Ariel University, Israel.
Dr. Alexander Rybalov is with the LAMBDA Laboratory, Tel-Aviv University, Israel.
Prof. Ronald Yager is with the Machine Learning Institute, Yona College, New York, USA.
作者簡介(中文翻譯)
埃夫根尼·卡根博士 目前任職於以色列阿里爾大學工程學院。
亞歷山大·里巴洛夫博士 目前任職於以色列特拉維夫大學LAMBDA實驗室。
羅納德·耶格教授 目前任職於美國紐約約納學院的機器學習研究所。