Applied Numerical Methods for Partial Differential Equations (偏微分方程的應用數值方法)

Gardner, Carl L.

  • 出版商: Springer
  • 出版日期: 2024-10-22
  • 售價: $2,650
  • 貴賓價: 9.5$2,518
  • 語言: 英文
  • 頁數: 216
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 3031696298
  • ISBN-13: 9783031696299
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

The aim of this book is to quickly elevate students to a proficiency level where they can solve linear and nonlinear partial differential equations using state-of-the-art numerical methods. It covers numerous topics typically absent in introductory texts on ODEs and PDEs, including:

  • Computing solutions to chaotic dynamical systems with TRBDF2
  • Simulating the nonlinear diffusion equation with TRBDF2
  • Applying Newton's method and GMRES to the nonlinear Laplace equation
  • Analyzing gas dynamics with WENO3 (1D Riemann problems and 2D supersonic jets)
  • Modeling the drift-diffusion equations with TRBDF2 and PCG
  • Solving the classical hydrodynamic model (electro-gas dynamics) with WENO3 and TRBDF2

The book features 34 original MATLAB programs illustrating each numerical method and includes 93 problems that confirm results discussed in the text and explore new directions. Additionally, it suggests eight semester-long projects.

This comprehensive text can serve as the basis for a one-semester graduate course on the numerical solution of partial differential equations, or, with some advanced material omitted, for a one-semester junior/senior or graduate course on the numerical solution of ordinary and partial differential equations. The topics and programs will be of interest to applied mathematicians, engineers, physicists, biologists, chemists, and more.

商品描述(中文翻譯)

本書的目標是迅速提升學生的能力,使其能夠使用最先進的數值方法解決線性和非線性偏微分方程。書中涵蓋了許多在常微分方程(ODEs)和偏微分方程(PDEs)入門教材中通常缺乏的主題,包括:

- 使用 TRBDF2 計算混沌動力系統的解
- 使用 TRBDF2 模擬非線性擴散方程
- 將牛頓法和 GMRES 應用於非線性拉普拉斯方程
- 使用 WENO3 分析氣體動力學(1D 里曼問題和 2D 超音速噴流)
- 使用 TRBDF2 和 PCG 建模漂移擴散方程
- 使用 WENO3 和 TRBDF2 解決經典流體動力學模型(電氣氣體動力學)

本書包含 34 個原創的 MATLAB 程式,展示每種數值方法,並提供 93 個問題以確認文本中討論的結果並探索新方向。此外,書中建議了八個學期長的專案。

這本全面的教材可以作為一門為期一學期的研究生課程的基礎,專注於偏微分方程的數值解,或者在省略一些進階材料的情況下,作為一門為期一學期的高年級或研究生課程,專注於常微分方程和偏微分方程的數值解。這些主題和程式將吸引應用數學家、工程師、物理學家、生物學家、化學家等相關領域的專業人士。

作者簡介

Carl Gardner is an Emeritus Professor of Mathematics at Arizona State University, where he taught and did research in Computational Mathematics for 30 years. Previously he held positions at Bowdoin College, NYU, and Duke University. Professor Gardner's research focuses on computational and theoretical fluid dynamics and the numerical solution of nonlinear partial differential equations. His primary application areas are charge transport in quantum semiconductor devices, ion transport in biological cells (modeling ionic channels as well as synapses), and supersonic flows in astrophysical jets (modeling interactions of jets with their environments and star formation). These problems are governed by coupled systems of nonlinear partial differential equations, and exhibit complex fluid dynamical phenomena involving nonlinear wave interactions.

作者簡介(中文翻譯)

卡爾·加德納(Carl Gardner)是亞利桑那州立大學的名譽數學教授,在該校教授並從事計算數學研究達30年。此前,他曾在博登學院、紐約大學和杜克大學任職。加德納教授的研究專注於計算和理論流體力學以及非線性偏微分方程的數值解。其主要應用領域包括量子半導體裝置中的電荷傳輸、生物細胞中的離子傳輸(模擬離子通道及突觸),以及天體噴流中的超音速流動(模擬噴流與其環境及恆星形成的相互作用)。這些問題由耦合的非線性偏微分方程系統所支配,並展現出涉及非線性波相互作用的複雜流體動力學現象。