Mathematical Descriptors of Molecules and Biomolecules: Applications in Chemistry, Drug Design, Chemical Toxicology, and Computational Biology

Basak, Subhash C.

  • 出版商: Springer
  • 出版日期: 2024-09-03
  • 售價: $1,940
  • 貴賓價: 9.5$1,843
  • 語言: 英文
  • 頁數: 168
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 3031678400
  • ISBN-13: 9783031678400
  • 相關分類: 化學 Chemistry
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

This book provides an up-to-date overview of data driven and evidence-based empirical approaches in the efficient application of chemodescriptors and biodescriptors. Currently there is a steady increase in the use of data analytics and model-based decision support systems in basic and applied research in chemoinformatics, bioinformatics, pharmaceutical drug design, predictive toxicology, and computational biology. Since there are a plethora of modeling methods and a large number of chemodescriptors and biodescriptors available today, robust statistical and machine learning methods are applied throughout. In addition, the development of statistically robust predictive models in rank deficient cases using chemodescrip tors and biodescriptors is discussed. Readers are provided with an up-to-date overview of the theoretical background, calculation methods, and proper use of chemodescriptors and biodescriptors in model building, with special emphasis on computer-assisted organic synthesis, new drug discovery, hazard assessment of chemicals, and computational biology of emerging global pathogens. The book also discusses the applications of alignment-free sequence descriptors (AFSDs) in vaccine design and the characterization of emerging global pathogens such as the Zika virus and SARS-CoV-2. The utility of molecular fragment-based descriptors in building useful quantitative structure-activity relationship (Q)SAR) models is detailed as is the use of mathematical structural descriptors in chemical synthesis planning.

商品描述(中文翻譯)

本書提供了有關數據驅動和基於證據的實證方法在化學描述符和生物描述符有效應用中的最新概述。目前,在化學資訊學、生物資訊學、藥物設計、預測毒理學和計算生物學的基礎與應用研究中,數據分析和基於模型的決策支持系統的使用穩步增加。由於當今有大量的建模方法以及眾多的化學描述符和生物描述符可供使用,因此在整個過程中應用了穩健的統計和機器學習方法。此外,還討論了在秩缺乏的情況下使用化學描述符和生物描述符開發統計穩健的預測模型。讀者將獲得有關理論背景、計算方法以及在模型構建中正確使用化學描述符和生物描述符的最新概述,特別強調計算機輔助有機合成、新藥發現、化學品危害評估以及新興全球病原體的計算生物學。本書還討論了無對齊序列描述符(AFSDs)在疫苗設計中的應用,以及對新興全球病原體如茲卡病毒和SARS-CoV-2的特徵描述。分子片段基描述符在構建有用的定量結構-活性關係(Q)SAR)模型中的實用性,以及數學結構描述符在化學合成規劃中的使用也有詳細說明。

作者簡介

Dr. Subhash C. Basak is a retired Adjunct Professor at the Department of Chemistry and Biochemistry, University of Minnesota Duluth, USA. Dr. Basak received his PhD in biochemistry from the University of Calcutta, India. During the past four decades he has pioneered research in the development of novel mathematical chemodescriptors and biodescriptors principally via applications of discrete mathematics on chemical and biological systems. He also published extensively on the use of such descriptors along with proper statistical methods in drug design, predictive toxicology, characterization of emerging global pathogens as well as nanotoxicology. He has collaborated with over seventy research scientists located in four continents: Asia, Europe, North America, and South America, whom he fondly calls members of his "virtual team". Such collaborations resulted in the publication of more than 300 journal papers and 35 book chapters. He is a full member of the International Academy of Mathematical Chemistry (IAMC) and a former Editor-in-Chief (EIC) of the international journal: Current Computer Aided Drug Design (CCADD).

作者簡介(中文翻譯)

Subhash C. Basak 博士是美國明尼蘇達大學杜魯斯分校化學與生物化學系的退休兼任教授。Basak 博士在印度加爾各答大學獲得生物化學博士學位。在過去的四十年中,他在新型數學化學描述符和生物描述符的開發方面開創了研究,主要通過將離散數學應用於化學和生物系統。他還廣泛發表有關這些描述符及其在藥物設計、預測毒理學、新興全球病原體特徵化以及奈米毒理學中正確統計方法使用的文章。他與來自四大洲(亞洲、歐洲、北美和南美)的七十多位研究科學家合作,並親切地稱他們為他的「虛擬團隊」成員。這些合作導致發表了超過300篇期刊論文和35章書籍章節。他是國際數學化學學院(IAMC)的正式成員,並曾擔任國際期刊《當前計算機輔助藥物設計》(CCADD)的主編。