Data-Driven Modelling and Scientific Machine Learning in Continuum Physics (數據驅動建模與連續物理中的科學機器學習)
Garikipati, Krishna
- 出版商: Springer
- 出版日期: 2024-07-30
- 售價: $5,810
- 貴賓價: 9.5 折 $5,520
- 語言: 英文
- 頁數: 230
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 3031620283
- ISBN-13: 9783031620287
-
相關分類:
Machine Learning、物理學 Physics
海外代購書籍(需單獨結帳)
相關主題
商品描述
This monograph takes the reader through recent advances in data-driven methods and machine learning for problems in science--specifically in continuum physics. It develops the foundations and details a number of scientific machine learning approaches to enrich current computational models of continuum physics, or to use the data generated by these models to infer more information on these problems. The perspective presented here is drawn from recent research by the author and collaborators. Applications drawn from the physics of materials or from biophysics illustrate each topic. Some elements of the theoretical background in continuum physics that are essential to address these applications are developed first. These chapters focus on nonlinear elasticity and mass transport, with particular attention directed at descriptions of phase separation. This is followed by a brief treatment of the finite element method, since it is the most widely used approach to solve coupled partial differential equations in continuum physics.
With these foundations established, the treatment proceeds to a number of recent developments in data-driven methods and scientific machine learning in the context of the continuum physics of materials and biosystems. This part of the monograph begins by addressing numerical homogenization of microstructural response using feed-forward as well as convolutional neural networks. Next is surrogate optimization using multifidelity learning for problems of phase evolution. Graph theory bears many equivalences to partial differential equations in its properties of representation and avenues for analysis as well as reduced-order descriptions--all ideas that offer fruitful opportunities for exploration. Neural networks, by their capacity for representation of high-dimensional functions, are powerful for scale bridging in physics--an idea on which we present a particular perspective in the context of alloys.
One of the most compelling ideas in scientific machine learning is the identification of governing equations from dynamical data--another topic that we explore from the viewpoint of partial differential equations encoding mechanisms. This is followed by an examination of approaches to replace traditional, discretization-based solvers of partial differential equations with deterministic and probabilistic neural networks that generalize across boundary value problems. The monograph closes with a brief outlook on current emerging ideas in scientific machine learning.
商品描述(中文翻譯)
這本專著帶領讀者了解在科學問題中,特別是連續介質物理學方面,數據驅動方法和機器學習的最新進展。它建立了基礎,並詳細介紹了多種科學機器學習方法,以豐富當前的連續介質物理計算模型,或利用這些模型生成的數據來推斷更多有關這些問題的信息。這裡所呈現的觀點源自作者及其合作者的最新研究。來自材料物理或生物物理的應用示例說明了每個主題。首先發展了連續介質物理中一些對於解決這些應用至關重要的理論背景元素。這些章節專注於非線性彈性和質量傳輸,特別關注相分離的描述。接下來簡要介紹有限元素法,因為它是解決連續介質物理中耦合偏微分方程的最廣泛使用的方法。
在建立這些基礎後,專著進一步探討在材料和生物系統的連續介質物理背景下,數據驅動方法和科學機器學習的多項最新發展。這部分專著首先討論使用前饋神經網絡和卷積神經網絡進行微觀結構響應的數值均質化。接下來是使用多保真度學習進行相演化問題的代理優化。圖論在其表示特性和分析途徑以及降維描述方面與偏微分方程有許多等價性,這些想法提供了豐富的探索機會。神經網絡因其高維函數的表示能力,在物理學中對於尺度橋接非常強大,這是一個我們在合金背景下提出的特定觀點。
科學機器學習中最引人注目的想法之一是從動態數據中識別控制方程,這是我們從編碼機制的偏微分方程的角度探討的另一個主題。接下來檢視了用確定性和隨機神經網絡取代傳統的基於離散化的偏微分方程求解器的方法,這些神經網絡能夠在邊界值問題中進行泛化。專著最後簡要展望了當前科學機器學習中出現的新想法。
作者簡介
Krishna Garikipati obtained his PhD at Stanford University in 1996, and after a few years of post-doctoral work, he joined the University of Michigan in 2000, rising to Professor in the Departments of Mechanical Engineering and Mathematics. Between 2016 and 2022, he served as the Director of the Michigan Institute for Computational Discovery & Engineering (MICDE). In January 2024 he moved to a a new position as Professor of Aerospace and Mechanical Engineering at University of Southern California. His research is in scientific machine learning and computational science, with applications drawn from biophysics, materials physics, mechanics and mathematical biology. He has been awarded the DOE Early Career Award for Scientists and Engineers, the Presidential Early Career Award for Scientists and Engineers (PECASE), and a Humboldt Research Fellowship. He is a fellow of the US Association for Computational Mechanics, and the International Association for Computational Mechanics, a Life Member of Clare Hall at University of Cambridge, and a visiting scholar in Computational Biology at the Flatiron Institute of the Simons Foundation.
作者簡介(中文翻譯)
Krishna Garikipati於1996年在史丹佛大學獲得博士學位,並在幾年的博士後研究後,於2000年加入密西根大學,晉升為機械工程與數學系的教授。在2016年至2022年間,他擔任密西根計算發現與工程研究所(MICDE)的主任。2024年1月,他轉任南加州大學航空航天與機械工程教授。他的研究領域包括科學機器學習和計算科學,應用範疇涵蓋生物物理、材料物理、力學和數學生物學。他曾獲得美國能源部科學家與工程師早期職業獎、總統科學家與工程師早期職業獎(PECASE)以及洪堡研究獎學金。他是美國計算力學協會和國際計算力學協會的會士,劍橋大學Clare Hall的終身會員,以及西蒙斯基金會Flatiron研究所計算生物學的訪問學者。