Recent Advances in LOGO Detection Using Machine Learning Paradigms: Theory and Practice

Chen, Yen-Wei, Ruan, Xiang, Jain, Rahul Kumar

  • 出版商: Springer
  • 出版日期: 2024-05-31
  • 售價: $5,470
  • 貴賓價: 9.5$5,197
  • 語言: 英文
  • 頁數: 119
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 3031598105
  • ISBN-13: 9783031598104
  • 相關分類: Machine Learning
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

This book presents the current trends in deep learning-based object detection framework with a focus on logo detection tasks. It introduces a variety of approaches, including attention mechanisms and domain adaptation for logo detection, and describes recent advancement in object detection frameworks using deep learning. We offer solutions to the major problems such as the lack of training data and the domain-shift issues.

This book provides numerous ways that deep learners can use for logo recognition, including:

  • Deep learning-based end-to-end trainable architecture for logo detection
  • Weakly supervised logo recognition approach using attention mechanisms
  • Anchor-free logo detection framework combining attention mechanisms to precisely locate logos in the real-world images
  • Unsupervised logo detection that takes into account domain-shift issues from synthetic to real-world images
  • Approach for logo detection modeling domain adaption task in the context of weakly supervised learning to overcome the lack of object-level annotation problem.

The merit of our logo recognition technique is demonstrated using experiments, performance evaluation, and feature distribution analysis utilizing different deep learning frameworks.

The book is directed to professors, researchers, practitioners in the field of engineering, computer science, and related fields as well as anyone interested in using deep learning techniques and applications in logo and various object detection tasks.

商品描述(中文翻譯)

本書介紹了基於深度學習的物體檢測框架的最新趨勢,特別聚焦於標誌檢測任務。它介紹了多種方法,包括用於標誌檢測的注意力機制和領域適應,並描述了使用深度學習的物體檢測框架的最新進展。我們提供了解決主要問題的方案,例如訓練數據的缺乏和領域轉移問題。

本書提供了深度學習者在標誌識別中可以使用的多種方法,包括:
- 基於深度學習的端到端可訓練架構,用於標誌檢測
- 使用注意力機制的弱監督標誌識別方法
- 結合注意力機制的無錨標誌檢測框架,以精確定位真實世界圖像中的標誌
- 考慮從合成圖像到真實世界圖像的領域轉移問題的無監督標誌檢測
- 在弱監督學習的背景下,針對標誌檢測建模領域適應任務的方法,以克服物體級標註缺乏的問題。

我們的標誌識別技術的優勢通過實驗、性能評估和特徵分佈分析,利用不同的深度學習框架得以展示。

本書面向工程、計算機科學及相關領域的教授、研究人員、實務工作者,以及任何對使用深度學習技術和應用於標誌及各種物體檢測任務感興趣的人士。