Principles of Locally Conformally Kähler Geometry
Ornea, Liviu, Verbitsky, Misha
- 出版商: Birkhauser Boston
- 出版日期: 2024-05-03
- 售價: $7,780
- 貴賓價: 9.5 折 $7,391
- 語言: 英文
- 頁數: 736
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 3031581199
- ISBN-13: 9783031581199
海外代購書籍(需單獨結帳)
相關主題
商品描述
This monograph introduces readers to locally conformally Kähler (LCK) geometry and provides an extensive overview of the most current results. A rapidly developing area in complex geometry dealing with non-Kähler manifolds, LCK geometry has strong links to many other areas of mathematics, including algebraic geometry, topology, and complex analysis. The authors emphasize these connections to create a unified and rigorous treatment of the subject suitable for both students and researchers.
Part I builds the necessary foundations for those approaching LCK geometry for the first time with full, mostly self-contained proofs and also covers material often omitted from textbooks, such as contact and Sasakian geometry, orbifolds, Ehresmann connections, and foliation theory. More advanced topics are then treated in Part II, including non-Kähler elliptic surfaces, cohomology of holomorphic vector bundles on Hopf manifolds, Kuranishi and Teichmüller spaces for LCK manifolds with potential, and harmonic forms on Sasakian and Vaisman manifolds. Each chapter in Parts I and II begins with motivation and historic context for the topics explored and includes numerous exercises for further exploration of important topics.
Part III surveys the current research on LCK geometry, describing advances on topics such as automorphism groups on LCK manifolds, twisted Hamiltonian actions and LCK reduction, Einstein-Weyl manifolds and the Futaki invariant, and LCK geometry on nilmanifolds and on solvmanifolds. New proofs of many results are given using the methods developed earlier in the text. The text then concludes with a chapter that gathers over 100 open problems, with context and remarks provided where possible, to inspire future research.
商品描述(中文翻譯)
本論文介紹了局部共形Kähler(LCK)幾何學,並提供了最新研究成果的廣泛概述。作為複雜幾何學中一個快速發展的領域,LCK幾何學與許多其他數學領域,包括代數幾何學、拓撲學和複分析學,有著密切的聯繫。作者強調這些聯繫,以創建一個統一且嚴謹的主題處理,適合學生和研究人員閱讀。
第一部分為初次接觸LCK幾何學的讀者建立了必要的基礎,提供了完整且大部分自包含的證明,並涵蓋了教科書中常常省略的內容,如接觸和Sasakian幾何學、奇點流形、Ehresmann連接和葉片理論。然後在第二部分中處理了更高級的主題,包括非Kähler橢圓曲面、Hopf流形上全純向量丛的上同調、具有潛力的LCK流形的Kuranishi和Teichmüller空間,以及Sasakian和Vaisman流形上的調和形式。第一部分和第二部分的每一章都以動機和歷史背景開始,並包含大量的練習題,以進一步探索重要主題。
第三部分概述了LCK幾何學的當前研究,描述了在LCK流形上的自同構群、扭曲Hamiltonian作用和LCK約化、Einstein-Weyl流形和Futaki不變量以及nilmanifold和solvmanifold上的LCK幾何學等主題上的進展。使用前文中發展的方法給出了許多結果的新證明。最後一章匯集了100多個開放問題,並在可能的情況下提供了背景和備註,以激發未來的研究。