Dive Into Misinformation Detection: From Unimodal to Multimodal and Multilingual Misinformation Detection (深入虛假資訊偵測:從單模態到多模態及多語言虛假資訊偵測)
Ekbal, Asif, Kumari, Rina
- 出版商: Springer
- 出版日期: 2024-05-28
- 售價: $4,800
- 貴賓價: 9.5 折 $4,560
- 語言: 英文
- 頁數: 172
- 裝訂: Quality Paper - also called trade paper
- ISBN: 3031548337
- ISBN-13: 9783031548338
海外代購書籍(需單獨結帳)
相關主題
商品描述
This book delivers a brief introduction to misinformation, and various novel approaches for solving misinformation detection problems. It considers all kinds of false information as fake news or misinformation and uses the terms fake news and misinformation interchangeably, in text, images, audio and video. The primary purpose is to provide a foundation for the problems of misinformation or false content detection including various challenges and approaches to solve them.
The book starts with an overall description of misinformation. It briefly introduces the history, various issues or challenges, reasons for creating and spreading misinformation, and its impact on individuals and society. The second chapter discusses prior works on misinformation detection and explores various datasets, recent advancements, and state-of-the-art mechanisms. Chapter three demonstrates that the presence of surprising content in a story draws instant attention and appeals to strong emotional stimuli, and subsequently explores the application of novelty and emotion in the misinformation detection domain. Next, chapter four first introduces multitasking and discusses its advantages, before developing a framework for joint learning of interrelated tasks such as emotion recognition, novelty detection, and misinformation detection. The fifth chapter explores various datasets and mechanisms leveraging multimodal information, and eventually explains the fusion mechanisms of text and image modalities to obtain an efficient multimodal feature that ultimately helps to classify multimedia fake news. Chapter six discusses how novelty and emotion can be helpful in multimodal misinformation detection. It shows that detecting misleading information is difficult without earlier knowledge about that particular news and explores the possible solutions to tackle this problem. Eventually, chapter seven introduces the concept of multilingualism and implements an effective neural model to detectfabricated multilingual information, which overcomes the research and development gap in misinformation detection for regional languages. The final chapter eight briefly summarizes the presented results.
This book is mainly written for researchers and graduate students specializing in fake news search and detection, as well as for industry professionals who need to explore various dimensions of misinformation detection regardless of their past knowledge and experience.
商品描述(中文翻譯)
本書簡要介紹了錯誤資訊及解決錯誤資訊檢測問題的各種新穎方法。它將各種虛假資訊視為假新聞或錯誤資訊,並在文本、圖像、音頻和視頻中交替使用假新聞和錯誤資訊這兩個術語。主要目的是為錯誤資訊或虛假內容檢測問題提供基礎,包括各種挑戰和解決方案。
本書首先對錯誤資訊進行整體描述。它簡要介紹了歷史、各種問題或挑戰、創造和傳播錯誤資訊的原因,以及其對個人和社會的影響。第二章討論了先前在錯誤資訊檢測方面的研究,探索了各種數據集、最近的進展和最先進的機制。第三章展示了故事中驚人內容的存在如何引起即時注意並激發強烈的情感刺激,隨後探討了新穎性和情感在錯誤資訊檢測領域的應用。接下來,第四章首先介紹了多任務學習並討論其優勢,然後開發了一個框架,用於共同學習情感識別、新穎性檢測和錯誤資訊檢測等相關任務。第五章探索了利用多模態資訊的各種數據集和機制,最終解釋了文本和圖像模態的融合機制,以獲得有效的多模態特徵,最終幫助分類多媒體假新聞。第六章討論了新穎性和情感如何在多模態錯誤資訊檢測中發揮作用。它顯示在沒有對特定新聞的先前知識的情況下,檢測誤導性資訊是困難的,並探索了解決此問題的可能方案。最後,第七章介紹了多語言的概念,並實施了一個有效的神經模型來檢測虛構的多語言資訊,克服了在地區語言的錯誤資訊檢測中的研究和開發差距。最後一章第八章簡要總結了所呈現的結果。
本書主要為專注於假新聞搜尋和檢測的研究人員和研究生撰寫,也適合需要探索錯誤資訊檢測各個維度的行業專業人士,不論其過去的知識和經驗。
作者簡介
Asif Ekbal is an Associate Professor in the Department of Computer Science and Engineering, IIT Patna and an Associate Dean, Resources at IIT Patna. He has been pursuing research in the broad areas of Artificial Intelligence, Natural Language Processing (NLP), and Machine Learning (ML) for the last 20 years.
Rina Kumari is an Assistant Professor in the School of Computer Engineering, KIIT Deemed to be University, Bhubaneswar, Odisha, India. Her main areas of research are Natural Language Processing, Deep Learning, and Fake News Detection.
作者簡介(中文翻譯)
Asif Ekbal 是印度 IIT Patna 計算機科學與工程系的副教授,並擔任 IIT Patna 的資源副院長。他在人工智慧、自然語言處理 (NLP) 和機器學習 (ML) 等廣泛領域進行研究已有 20 年之久。
Rina Kumari 是印度奧迪沙邦布巴內斯瓦爾 KIIT 大學計算機工程學院的助理教授。她的主要研究領域包括自然語言處理、深度學習和假新聞檢測。