Functions of Least Gradient
Górny, Wojciech, Mazón, José M.
- 出版商: Birkhauser Boston
- 出版日期: 2024-05-23
- 售價: $7,010
- 貴賓價: 9.5 折 $6,660
- 語言: 英文
- 頁數: 428
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 3031518802
- ISBN-13: 9783031518805
下單後立即進貨 (約1週~2週)
相關主題
商品描述
This book is devoted to the least gradient problem and its variants. The least gradient problem concerns minimization of the total variation of a function with prescribed values on the boundary of a Lipschitz domain. It is the model problem for studying minimization problems involving functionals with linear growth. Functions which solve the least gradient problem for their own boundary data, which arise naturally in the study of minimal surfaces, are called functions of least gradient.
The main part of the book is dedicated to presenting the recent advances in this theory. Among others are presented an Euler-Lagrange characterization of least gradient functions, an anisotropic counterpart of the least gradient problem motivated by an inverse problem in medical imaging, and state-of-the-art results concerning existence, regularity, and structure of solutions. Moreover, the authors present a surprising connection between the least gradient problem and the Monge-Kantorovich optimal transport problem and some of its consequences, and discuss formulations of the least gradient problem in the nonlocal and metric settings. Each chapter is followed by a discussion section concerning other research directions, generalizations of presented results, and presentation of some open problems.
The book is intended as an introduction to the theory of least gradient functions and a reference tool for a general audience in analysis and PDEs. The readers are assumed to have a basic understanding of functional analysis and partial differential equations. Apart from this, the text is self-contained, and the book ends with five appendices on functions of bounded variation, geometric measure theory, convex analysis, optimal transport, and analysis in metric spaces.
商品描述(中文翻譯)
本書專注於最小梯度問題及其變體。最小梯度問題涉及在Lipschitz區域的邊界上具有預定值的函數的總變異的最小化。它是研究涉及具有線性增長的泛函的最小化問題的模型問題。解決其自身邊界數據的最小梯度問題的函數,在研究極小曲面時自然產生,被稱為最小梯度函數。
本書的主要部分致力於介紹該理論的最新進展。其中包括最小梯度函數的Euler-Lagrange特徵化,受醫學成像逆問題啟發的最小梯度問題的各向異性對應問題,以及關於解的存在性、正則性和結構的最新結果。此外,作者還介紹了最小梯度問題與Monge-Kantorovich最優運輸問題及其一些結果之間的驚人聯繫,並討論了在非局部和度量設置中的最小梯度問題的表述。每章後面都有一個討論部分,涉及其他研究方向、所介紹結果的推廣以及一些未解決的問題。
本書旨在介紹最小梯度函數理論並作為分析和偏微分方程領域的廣大讀者的參考工具。讀者需具備基本的泛函分析和偏微分方程的理解。除此之外,本書內容自成一體,並以五個附錄結束,內容涵蓋有界變異函數、幾何測度論、凸分析、最優運輸和度量空間分析。
作者簡介
José M. Mazón is a professor emeritus of the Department of Mathematical Analysis at the University of Valencia. His main field of research are nonlinear partial differential equations.
作者簡介(中文翻譯)
Wojciech Górny畢業於華沙大學,目前是維也納大學的高級博士後研究員。他主要從事變分計算、泛函分析和偏微分方程的研究。
José M. Mazón是瓦倫西亞大學數學分析系的名譽教授。他的主要研究領域是非線性偏微分方程。