Accountable and Explainable Methods for Complex Reasoning Over Text

Atanasova, Pepa

  • 出版商: Springer
  • 出版日期: 2024-04-06
  • 售價: $3,680
  • 貴賓價: 9.5$3,496
  • 語言: 英文
  • 頁數: 199
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 303151517X
  • ISBN-13: 9783031515170
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

This thesis presents research that expands the collective knowledge in the areas of accountability and transparency of machine learning (ML) models developed for complex reasoning tasks over text. In particular, the presented results facilitate the analysis of the reasons behind the outputs of ML models and assist in detecting and correcting for potential harms. It presents two new methods for accountable ML models; advances the state of the art with methods generating textual explanations that are further improved to be fluent, easy to read, and to contain logically connected multi-chain arguments; and makes substantial contributions in the area of diagnostics for explainability approaches. All results are empirically tested on complex reasoning tasks over text, including fact checking, question answering, and natural language inference.

This book is a revised version of the PhD dissertation written by the author to receive her PhD from the Faculty of Science, University of Copenhagen, Denmark. In 2023, it won the Informatics Europe Best Dissertation Award, granted to the most outstanding European PhD thesis in the field of computer science.


商品描述(中文翻譯)

本論文提出了一項研究,擴展了關於機器學習(ML)模型在複雜推理任務上的責任和透明度的集體知識。具體而言,所呈現的結果有助於分析ML模型輸出背後的原因,並協助檢測和修正潛在的危害。它提出了兩種新的可追溯ML模型的方法;通過生成文本解釋的方法推進了技術水平,這些解釋進一步改進為流暢、易讀且包含邏輯連接的多鏈論證;並在可解釋性方法的診斷領域做出了重大貢獻。所有結果都在複雜的文本推理任務上進行了實證測試,包括事實檢查、問答和自然語言推理。

本書是作者為了獲得哥本哈根大學科學學院博士學位而撰寫的博士論文的修訂版本。在2023年,該論文獲得了Informatics Europe最佳博士論文獎,該獎項授予計算機科學領域最優秀的歐洲博士論文。

作者簡介

Pepa Atanasova is a postdoctoral researcher at the University of Copenhagen. She has received her PhD degree at the University of Copenhagen receiving the Best Dissertation Award of Informatics Europe in 2023. Her current research focuses on explainability for machine learning models, encompassing natural language explanations, post-hoc explainability methods, and adversarial attacks as well as the principled evaluation of existing explainability techniques.


作者簡介(中文翻譯)

Pepa Atanasova是哥本哈根大學的博士後研究員。她在2023年獲得哥本哈根大學的博士學位,並獲得Informatics Europe的最佳論文獎。她目前的研究重點是機器學習模型的可解釋性,包括自然語言解釋、事後可解釋性方法、對抗性攻擊以及現有可解釋性技術的原則性評估。