High-Order Finite Difference and Finite Element Methods for Solving Some Partial Differential Equations (高階有限差分與有限元素法解某些偏微分方程)

Vandandoo, Ulziibayar, Zhanlav, Tugal, Chuluunbaatar, Ochbadrakh

  • 出版商: Springer
  • 出版日期: 2024-02-06
  • 售價: $1,440
  • 貴賓價: 9.5$1,368
  • 語言: 英文
  • 頁數: 114
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 3031447832
  • ISBN-13: 9783031447839
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

The monograph is devoted to the construction of the high-order finite difference and finite element methods for numerical solving multidimensional boundary-value problems (BVPs) for different partial differential equations, in particular, linear Helmholtz and wave equations, nonlinear Burgers' equations, and elliptic (Schrödinger) equation. Despite of a long history especially in development of the theoretical background of these methods there are open questions in their constructive implementation in numerical solving the multidimensional BVPs having additional requirement on physical parameters or desirable properties of its approximate solutions.

Over the last two decades many papers on this topics have been published, in which new constructive approaches to numerically solving the multidimensional BVPs were proposed, and its highly desirable to systematically collect these results. This motivate us to write thus monograph based on our research results obtainedin collaboration with the co-authors. Since the topic is importance we believe that this book will be useful to readers, graduate students and researchers interested in the field of computational physics, applied mathematics, numerical analysis and applied sciences

商品描述(中文翻譯)

這本專著專注於高階有限差分法和有限元素法的構建,以數值方式解決多維邊界值問題(BVPs),針對不同的偏微分方程,特別是線性赫姆霍茲方程和波方程、非線性伯格斯方程以及橢圓(薛丁格)方程。儘管這些方法的理論背景發展歷史悠久,但在其數值解決多維BVPs的具體實施中,仍然存在一些未解決的問題,特別是對物理參數或其近似解的期望性質的額外要求。

在過去的二十年中,許多關於這些主題的論文已經發表,提出了數值解決多維BVPs的新構造方法,因此系統性地收集這些結果是非常必要的。這激勵我們根據與合著者合作所獲得的研究成果撰寫這本專著。由於這個主題的重要性,我們相信這本書將對對計算物理、應用數學、數值分析和應用科學感興趣的讀者、研究生和研究人員有所幫助。