-
出版商:
Springer
-
出版日期:
2024-01-03
-
售價:
$5,530
-
貴賓價:
9.5 折
$5,254
-
語言:
英文
-
頁數:
378
-
裝訂:
Hardcover - also called cloth, retail trade, or trade
-
ISBN:
3031442253
-
ISBN-13:
9783031442254
-
相關分類:
Machine Learning、量子 Quantum、量子計算
商品描述
This book presents a new way of thinking about quantum mechanics and machine learning by merging the two. Quantum mechanics and machine learning may seem theoretically disparate, but their link becomes clear through the density matrix operator which can be readily approximated by neural network models, permitting a formulation of quantum physics in which physical observables can be computed via neural networks. As well as demonstrating the natural affinity of quantum physics and machine learning, this viewpoint opens rich possibilities in terms of computation, efficient hardware, and scalability. One can also obtain trainable models to optimize applications and fine-tune theories, such as approximation of the ground state in many body systems, and boosting quantum circuits' performance. The book begins with the introduction of programming tools and basic concepts of machine learning, with necessary background material from quantum mechanics and quantum information also provided. This enables the basic building blocks, neural network models for vacuum states, to be introduced. The highlights that follow include: non-classical state representations, with squeezers and beam splitters used to implement the primary layers for quantum computing; boson sampling with neural network models; an overview of available quantum computing platforms, their models, and their programming; and neural network models as a variational ansatz for many-body Hamiltonian ground states with applications to Ising machines and solitons. The book emphasizes coding, with many open source examples in Python and TensorFlow, while MATLAB and Mathematica routines clarify and validate proofs. This book is essential reading for graduate students and researchers who want to develop both the requisite physics and coding knowledge to understand the rich interplay of quantum mechanics and machine learning.
商品描述(中文翻譯)
這本書提出了一種將量子力學和機器學習結合的新思維方式。量子力學和機器學習在理論上可能看似不相關,但通過密度矩陣運算子的連結,兩者之間的關聯變得清晰。這種運算子可以通過神經網絡模型來近似,從而使得量子物理的物理可觀測量可以通過神經網絡來計算。除了展示量子物理和機器學習之間的自然親和性外,這種觀點還在計算、高效硬件和可擴展性方面開啟了豐富的可能性。我們還可以獲得可訓練的模型來優化應用和微調理論,例如在多體系統中近似計算基態,以及提升量子電路的性能。本書首先介紹了編程工具和機器學習的基本概念,同時提供了來自量子力學和量子信息的必要背景材料。這使得可以引入用於真空態的神經網絡模型的基本構建塊。接下來的重點包括:非經典狀態表示,使用壓縮器和光束分配器來實現量子計算的主要層;使用神經網絡模型進行玻色子採樣;現有量子計算平台的概述,以及它們的模型和編程方式;以及神經網絡模型作為多體哈密頓基態的變分近似,並應用於Ising機器和孤立子。本書強調編程,提供了許多Python和TensorFlow的開源示例,同時MATLAB和Mathematica的例程可以澄清和驗證證明。這本書是研究生和研究人員必讀的,他們希望開發出既具備物理學又具備編程知識的能力,以理解量子力學和機器學習之間豐富的相互作用。
作者簡介
Claudio Conti is an associate professor at the Department of Physics of the University Sapienza of Rome. He authored over 250 articles in many fields, such as quantum physics, photonics, nonlinear science, biophysics, and complexity. His activity includes experiments and theory, such as the first observation of replica symmetry breaking mentioned in the scientific background of the Nobel prize in physics in 2021, the investigation of neuromorphic computing by quantum fluids, and the optical acceleration of natural language processing. Claudio Conti coordinates an experimental and theoretical group in Rome exploring the frontiers of artificial intelligence and physics.
作者簡介(中文翻譯)
Claudio Conti是羅馬大學Sapienza校區物理學系的副教授。他在許多領域撰寫了超過250篇文章,包括量子物理學、光子學、非線性科學、生物物理學和複雜性等。他的研究活動涵蓋實驗和理論,例如在2021年諾貝爾物理學獎的科學背景中提到的第一次觀察到的複製對稱性破缺,以及關於量子流體的神經形態計算和自然語言處理的光學加速。Claudio Conti在羅馬領導一個實驗和理論團隊,探索人工智慧和物理學的前沿領域。