Finite Volumes for Complex Applications X--Volume 1, Elliptic and Parabolic Problems: Fvca10, Strasbourg, France, October 30, 2023-November 03, 2023,

Franck, Emmanuel, Fuhrmann, Jürgen, Michel-Dansac, Victor

  • 出版商: Springer
  • 出版日期: 2024-10-03
  • 售價: $7,030
  • 貴賓價: 9.5$6,679
  • 語言: 英文
  • 頁數: 396
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 3031408667
  • ISBN-13: 9783031408663
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

This volume comprises the first part of the proceedings of the 10th International Conference on Finite Volumes for Complex Applications, FVCA, held in Strasbourg, France, during October 30 to November 3, 2023.

The Finite Volume method, and several of its variants, is a spatial discretization technique for partial differential equations based on the fundamental physical principle of conservation. Recent decades have brought significant success in the theoretical understanding of the method. Many finite volume methods are also built to preserve some properties of the continuous equations, including maximum principles, dissipativity, monotone decay of the free energy, asymptotic stability, or stationary solutions. Due to these properties, finite volume methods belong to the wider class of compatible discretization methods, which preserve qualitative properties of continuous problems at the discrete level. This structural approach to the discretization of partial differential equations becomes particularly important for multiphysics and multiscale applications. In recent years, the efficient implementation of these methods in numerical software packages, more specifically to be used in supercomputers, has drawn some attention.

This volume contains all invited papers, as well as the contributed papers focusing on finite volume schemes for elliptic and parabolic problems. They include structure-preserving schemes, convergence proofs, and error estimates for problems governed by elliptic and parabolic partial differential equations.

The second volume is focused on finite volume methods for hyperbolic and related problems, such as methods compatible with the low Mach number limit or able to exactly preserve steady solutions, the development and analysis of high order methods, or the discretization of kinetic equations.


商品描述(中文翻譯)

本卷包含第十屆國際有限體積法於複雜應用會議(FVCA)會議紀錄的第一部分,該會議於2023年10月30日至11月3日在法國斯特拉斯堡舉行。

有限體積法及其幾個變體是一種針對偏微分方程的空間離散化技術,基於保守的基本物理原則。近幾十年來,該方法的理論理解取得了顯著的成功。許多有限體積法也旨在保留連續方程的一些性質,包括最大原則、耗散性、自由能的單調衰減、漸近穩定性或穩態解。由於這些性質,有限體積法屬於更廣泛的相容離散化方法類別,這些方法在離散層面上保留了連續問題的定性特性。這種對偏微分方程離散化的結構性方法對於多物理場和多尺度應用變得尤為重要。近年來,這些方法在數值軟體包中的高效實現,特別是用於超級計算機的應用,受到了一些關注。

本卷包含所有受邀論文,以及專注於橢圓和拋物問題的有限體積方案的投稿論文。這些論文包括結構保留方案、收斂證明以及針對由橢圓和拋物偏微分方程所支配問題的誤差估計。

第二卷專注於超波和相關問題的有限體積法,例如與低馬赫數極限相容的方法或能夠精確保留穩態解的方法、高階方法的開發與分析,或動力學方程的離散化。