Learning in the Absence of Training Data
Chakrabarty, Dalia
- 出版商: Springer
- 出版日期: 2024-07-15
- 售價: $5,710
- 貴賓價: 9.5 折 $5,425
- 語言: 英文
- 頁數: 227
- 裝訂: Quality Paper - also called trade paper
- ISBN: 3031310136
- ISBN-13: 9783031310133
海外代購書籍(需單獨結帳)
相關主題
商品描述
This book introduces the concept of "bespoke learning", a new mechanistic approach that makes it possible to generate values of an output variable at each designated value of an associated input variable. Here the output variable generally provides information about the system's behaviour/structure, and the aim is to learn the input-output relationship, even though little to no information on the output is available, as in multiple real-world problems. Once the output values have been bespoke-learnt, the originally-absent training set of input-output pairs becomes available, so that (supervised) learning of the sought inter-variable relation is then possible. Three ways of undertaking such bespoke learning are offered: by tapping into system dynamics in generic dynamical systems, to learn the function that causes the system's evolution; by comparing realisations of a random graph variable, given multivariate time series datasets of disparate temporal coverage; and by designing maximally information-availing likelihoods in static systems. These methodologies are applied to four different real-world problems: forecasting daily COVID-19 infection numbers; learning the gravitational mass density in a real galaxy; learning a sub-surface material density function; and predicting the risk of onset of a disease following bone marrow transplants. Primarily aimed at graduate and postgraduate students studying a field which includes facets of statistical learning, the book will also benefit experts working in a wide range of applications. The prerequisites are undergraduate level probability and stochastic processes, and preliminary ideas on Bayesian statistics.
商品描述(中文翻譯)
本書介紹了「量身定制學習」的概念,這是一種新的機械性方法,使得在每個指定的相關輸入變數值下生成輸出變數的值成為可能。在這裡,輸出變數通常提供有關系統行為/結構的信息,目標是學習輸入與輸出之間的關係,即使在多個現實世界的問題中,對輸出的信息幾乎沒有或完全沒有可用。一旦輸出值經過量身定制學習後,最初缺失的輸入-輸出對的訓練集便會變得可用,從而使得尋求的變數間關係的(監督式)學習成為可能。提供了三種進行此類量身定制學習的方法:通過利用通用動態系統中的系統動力學,學習導致系統演變的函數;通過比較隨機圖變數的實現,給定不同時間範圍的多變量時間序列數據集;以及在靜態系統中設計最大化信息可用性的似然性。這些方法應用於四個不同的現實世界問題:預測每日 COVID-19 感染人數;學習真實星系中的重力質量密度;學習地下材料密度函數;以及預測骨髓移植後疾病發作的風險。本書主要針對研究統計學習相關領域的研究生和博士生,同時也將惠及在廣泛應用中工作的專家。先決條件為本科水平的概率論和隨機過程,以及對貝葉斯統計的初步概念。
作者簡介
作者簡介(中文翻譯)
達莉亞·查克拉巴提博士擁有牛津大學的天體物理學博士學位,這是在她從印度科學研究所物理系獲得碩士學位後進行的。完成博士研究後,她轉向開發通用系統中屬性學習的方法論,針對各種具有挑戰性的數據情況,並將這些方法應用於各個學科的現實問題。她在倫敦布魯內爾大學的數學系工作,主要研究興趣包括在貝葉斯範式下的機器學習(ML)數學基礎。