Collision Detection for Robot Manipulators: Methods and Algorithms

Park, Kyu Min, Park, Frank C.

  • 出版商: Springer
  • 出版日期: 2024-05-21
  • 售價: $5,040
  • 貴賓價: 9.5$4,788
  • 語言: 英文
  • 頁數: 122
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 3031301978
  • ISBN-13: 9783031301971
  • 相關分類: 機器人製作 RobotsAlgorithms-data-structures
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

This book provides a concise survey and description of recent collision detection methods for robot manipulators. Beginning with a review of robot kinodynamic models and preliminaries on basic statistical learning methods, the book covers fundamental aspects of the collision detection problem, from collision types and collision detection performance criteria to model-free versus model-based methods, and the more recent data-driven learning-based approaches to collision detection. Special effort has been given to describing and evaluating existing methods with a unified set of notation, systematically categorizing these methods according to a basic set of criteria, and summarizing the advantages and disadvantages of each method. This book is the first to comprehensively organize the growing body of learning-based collision detection methods, ranging from basic supervised learning methods to more advanced approaches based on unsupervised learning and transfer learning techniques. Step-by-step implementation details and pseudocode descriptions are provided for key algorithms. Collision detection performance is measured with respect to both conventional criteria such as detection delay and the number of false alarms, as well as criteria that measure generalization capability for learning-based methods. Whether it be for research or commercial applications, in settings ranging from industrial factories to physical human-robot interaction experiments, this book can help the reader choose and successfully implement the most appropriate detection method that suits their robot system and application.


商品描述(中文翻譯)

本書提供了對於機器人操縱器最新碰撞偵測方法的簡明調查和描述。從機器人運動動力學模型的回顧和基本統計學習方法的初步介紹開始,本書涵蓋了碰撞偵測問題的基本方面,從碰撞類型和碰撞偵測性能標準到基於模型和基於數據學習的最新方法。特別著重於使用統一的符號描述和評估現有方法,根據一組基本標準系統地將這些方法分類,並總結每種方法的優點和缺點。本書是第一本全面組織日益增長的基於學習的碰撞偵測方法的著作,從基本的監督學習方法到基於非監督學習和轉移學習技術的更高級方法。關鍵算法提供了逐步實施細節和偽代碼描述。碰撞偵測性能的評估考慮了傳統標準,如偵測延遲和虛警數量,以及衡量基於學習方法的泛化能力的標準。無論是用於研究還是商業應用,從工業廠房到實際的人機交互實驗,本書可以幫助讀者選擇並成功實施最適合其機器人系統和應用的偵測方法。