Machine Learning and Deep Learning in Computational Toxicology

Hong, Huixiao

  • 出版商: Springer
  • 出版日期: 2024-02-08
  • 售價: $6,040
  • 貴賓價: 9.5$5,738
  • 語言: 英文
  • 頁數: 635
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 3031207327
  • ISBN-13: 9783031207327
  • 相關分類: Machine LearningDeepLearning
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

This book is a collection of machine learning and deep learning algorithms, methods, architectures, and software tools that have been developed and widely applied in predictive toxicology. It compiles a set of recent applications using state-of-the-art machine learning and deep learning techniques in analysis of a variety of toxicological endpoint data. The contents illustrate those machine learning and deep learning algorithms, methods, and software tools and summarise the applications of machine learning and deep learning in predictive toxicology with informative text, figures, and tables that are contributed by the first tier of experts. One of the major features is the case studies of applications of machine learning and deep learning in toxicological research that serve as examples for readers to learn how to apply machine learning and deep learning techniques in predictive toxicology. This book is expected to provide a reference for practical applications of machine learning anddeep learning in toxicological research. It is a useful guide for toxicologists, chemists, drug discovery and development researchers, regulatory scientists, government reviewers, and graduate students. The main benefit for the readers is understanding the widely used machine learning and deep learning techniques and gaining practical procedures for applying machine learning and deep learning in predictive toxicology.

商品描述(中文翻譯)

本書是關於機器學習和深度學習演算法、方法、架構及軟體工具的彙編,這些技術已被開發並廣泛應用於預測毒理學。書中匯集了一系列使用最先進的機器學習和深度學習技術分析各種毒理學終點數據的最新應用。內容展示了這些機器學習和深度學習演算法、方法及軟體工具,並總結了機器學習和深度學習在預測毒理學中的應用,配以由頂尖專家貢獻的資訊性文字、圖表和表格。其中一個主要特色是機器學習和深度學習在毒理學研究中的應用案例研究,這些案例為讀者提供了學習如何在預測毒理學中應用機器學習和深度學習技術的範例。本書預期將為機器學習和深度學習在毒理學研究中的實際應用提供參考,是毒理學家、化學家、藥物發現與開發研究人員、監管科學家、政府審查員及研究生的有用指南。對讀者的主要好處在於理解廣泛使用的機器學習和深度學習技術,並獲得在預測毒理學中應用這些技術的實用程序。

作者簡介

Huixiao Hong is a Senior Biomedical Research and Biomedical Product Assessment Service (SBRBPAS) expert and the chief of Bioinformatics Branch, Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, US Food and Drug Administration (FDA), working on the scientific bases for regulatory applications of bioinformatics, cheminformatics, artificial intelligence, and genomics. Before joining the FDA, he was the manager of Bioinformatics Division of Z-Tech, an ICFI company. He held a research scientist position at Sumitomo Chemical Company in Japan and was a visiting scientist at National Cancer Institute at National Institutes of Health. He was also an associate professor and the director of Laboratory of Computational Chemistry at Nanjing University in China. Dr. Hong is a member of steering committee of OpenTox, a member of the board directors of US MidSouth Computational Biology and Bioinformatics Society, and in the leadership circle of US FDA modeling and simulation working group. He published more than 240 scientific papers with a Google Scholar h-index 60. He serves as an associate editor for Experimental Biology and Medicine and an editorial board member for multiple peer-reviewed journals. He received his Ph.D. from Nanjing University in China and conducted research in Leeds University in England.

作者簡介(中文翻譯)

胡小洪是美國食品藥品監督管理局(FDA)毒理研究國家中心生物資訊分支的高級生物醫學研究與生物醫學產品評估服務(SBRBPAS)專家及負責人,專注於生物資訊學、化學資訊學、人工智慧和基因組學在監管應用中的科學基礎。在加入FDA之前,他曾擔任ICFI公司Z-Tech的生物資訊部門經理。他在日本住友化學公司擔任研究科學家,並曾是美國國立衛生研究院國家癌症研究所的訪問科學家。他還曾是中國南京大學的副教授及計算化學實驗室主任。胡博士是OpenTox指導委員會成員、美國中南部計算生物學與生物資訊學會董事會成員,以及美國FDA建模與模擬工作組的領導圈成員。他發表了超過240篇科學論文,Google Scholar的h-index為60。他擔任《實驗生物學與醫學》的副編輯,並是多本同行評審期刊的編輯委員會成員。他在中國南京大學獲得博士學位,並在英國利茲大學進行研究。