Ocaml Scientific Computing: Functional Programming in Data Science and Artificial Intelligence
暫譯: OCaml 科學計算:數據科學與人工智慧中的函數式編程

Wang, Liang, Zhao, Jianxin, Mortier, Richard

  • 出版商: Springer
  • 出版日期: 2022-05-27
  • 售價: $2,470
  • 貴賓價: 9.5$2,347
  • 語言: 英文
  • 頁數: 355
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 3030976440
  • ISBN-13: 9783030976446
  • 相關分類: Functional-programming人工智慧Data Science
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

This book is about the harmonious synthesis of functional programming and numerical computation. It shows how the expressiveness of OCaml allows for fast and safe development of data science applications. Step by step, the authors build up to use cases drawn from many areas of Data Science, Machine Learning, and AI, and then delve into how to deploy at scale, using parallel, distributed, and accelerated frameworks to gain all the advantages of cloud computing environments.

To this end, the book is divided into three parts, each focusing on a different area. Part I begins by introducing how basic numerical techniques are performed in OCaml, including classical mathematical topics (interpolation and quadrature), statistics, and linear algebra. It moves on from using only scalar values to multi-dimensional arrays, introducing the tensor and Ndarray, core data types in any numerical computing system. It concludes with two more classical numerical computing topics, the solution of Ordinary Differential Equations (ODEs) and Signal Processing, as well as introducing the visualization module we use throughout this book. Part II is dedicated to advanced optimization techniques that are core to most current popular data science fields. We do not focus only on applications but also on the basic building blocks, starting with Algorithmic Differentiation, the most crucial building block that in turn enables Deep Neural Networks. We follow this with chapters on Optimization and Regression, also used in building Deep Neural Networks. We then introduce Deep Neural Networks as well as topic modelling in Natural Language Processing (NLP), two advanced and currently very active fields in both industry and academia. Part III collects a range of case studies demonstrating how you can build a complete numerical application quickly from scratch using Owl. The cases presented include computer vision and recommender systems.

This book aims at anyone with a basic knowledge of functional programming and a desire to explore the world of scientific computing, whether to generally explore the field in the round, to build applications for particular topics, or to deep-dive into how numerical systems are constructed. It does not assume strict ordering in reading - readers can simply jump to the topic that interests them most.


商品描述(中文翻譯)

這本書探討了函數式編程與數值計算的和諧綜合。它展示了 OCaml 的表達能力如何促進數據科學應用的快速且安全的開發。作者逐步建立了來自數據科學、機器學習和人工智慧多個領域的使用案例,然後深入探討如何在大規模環境中部署,利用並行、分佈式和加速框架來獲取雲計算環境的所有優勢。

為此,本書分為三個部分,每個部分專注於不同的領域。第一部分首先介紹了如何在 OCaml 中執行基本的數值技術,包括經典的數學主題(插值和數值積分)、統計學和線性代數。它從僅使用標量值轉向多維陣列,介紹了張量(tensor)和 Ndarray,這是任何數值計算系統中的核心數據類型。最後,還介紹了兩個經典的數值計算主題:常微分方程(ODEs)的解法和信號處理,並介紹了我們在本書中使用的可視化模組。第二部分專注於當前大多數流行數據科學領域的核心高級優化技術。我們不僅關注應用,還關注基本的構建塊,從算法微分(Algorithmic Differentiation)開始,這是促成深度神經網絡的最關鍵構建塊。接下來的章節涵蓋了優化和回歸,這些也用於構建深度神經網絡。然後,我們介紹了深度神經網絡以及自然語言處理(NLP)中的主題建模,這是當前在產業和學術界都非常活躍的兩個高級領域。第三部分收集了一系列案例研究,展示了如何使用 Owl 從零開始快速構建完整的數值應用。所呈現的案例包括計算機視覺和推薦系統。

本書的目標是針對任何具備基本函數式編程知識並希望探索科學計算世界的人,無論是一般性地探索該領域、為特定主題構建應用,還是深入了解數值系統的構建。它不假設閱讀的嚴格順序——讀者可以直接跳到他們最感興趣的主題。

作者簡介

Liang Wang is a Principal AI Architect at Nokia, a Senior Researcher at the University of Cambridge, an Intel Software Innovator, and the Chief Scientific Officer at IKVA. He has a broad research interest in artificial intelligence, machine learning, operating systems, computer networks, optimization theory, and graph theory.

Jianxin Zhao is a PhD graduate from the University of Cambridge. His research interests include numerical computation, artificial intelligence, decentralized systems, and their application in the real world.

Richard Mortier is a Professor in Computing and Human-Data Interaction at the University of Cambridge. He works at the intersection of systems and networking with human-computer interaction, and he currently focuses on building user-centric systems infrastructure.


作者簡介(中文翻譯)

梁旺是Nokia的首席人工智慧架構師、劍橋大學的高級研究員、Intel軟體創新者,以及IKVA的首席科學官。他的研究興趣廣泛,涵蓋人工智慧、機器學習、作業系統、計算機網路、優化理論和圖論。

趙建新是劍橋大學的博士畢業生。他的研究興趣包括數值計算、人工智慧、去中心化系統及其在現實世界中的應用。

理查德·莫提爾是劍橋大學計算與人類數據互動的教授。他的研究領域位於系統與網路以及人機互動的交集,目前專注於建立以使用者為中心的系統基礎設施。