Dynamic Resource Management in Service-Oriented Core Networks
暫譯: 服務導向核心網路中的動態資源管理

Zhuang, Weihua, Qu, Kaige

  • 出版商: Springer
  • 出版日期: 2021-11-05
  • 售價: $6,480
  • 貴賓價: 9.5$6,156
  • 語言: 英文
  • 頁數: 188
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 3030871355
  • ISBN-13: 9783030871352
  • 相關分類: SOA
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

This book provides a timely and comprehensive study of dynamic resource management for network slicing in service-oriented fifth-generation (5G) and beyond core networks. This includes the perspective of developing efficient computation resource provisioning and scheduling solutions to guarantee consistent service performance in terms of end-to-end (E2E) data delivery delay.
Network slicing is enabled by the software defined networking (SDN) and network function virtualization (NFV) paradigms. For a network slice with a target traffic load, the E2E service delivery is enabled by virtual network function (VNF) placement and traffic routing with static resource allocations. When data traffic enters the network, the traffic load is dynamic and can deviate from the target value, potentially leading to QoS performance degradation and network congestion. Data traffic has dynamics in different time granularities. For example, the traffic statistics (e.g., mean and variance) can be non-stationary and experience significant changes in a coarse time granularity, which are usually predictable. Within a long time duration with stationary traffic statistics, there are traffic dynamics in small timescales, which are usually highly bursty and unpredictable. To provide continuous QoS performance guarantee and ensure efficient and fair operation of the network slices over time, it is essential to develop dynamic resource management schemes for the embedded services in the presence of traffic dynamics during virtual network operation. Queueing theory is used in system modeling, and different techniques including optimization and machine learning are applied to solving the dynamic resource management problems.
Based on a simplified M/M/1 queueing model with Poisson traffic arrivals, an optimization model for flow migration is presented to accommodate the large-timescale changes in the average traffic rates with average E2E delay guarantee, while addressing a trade-off between load balancing and flow migration overhead. To overcome the limitations of Poisson traffic model, the authors present a machine learning approach for dynamic VNF resource scaling and migration. The new solution captures the inherent traffic patterns in a real-world traffic trace with non-stationary traffic statistics in large timescale, predicts resource demands for VNF resource scaling, and triggers adaptive VNF migration decision making, to achieve load balancing, migration cost reduction, and resource overloading penalty suppression in the long run. Both supervised and unsupervised machine learning tools are investigated for dynamic resource management. To accommodate the traffic dynamics in small time granularities, the authors present a dynamic VNF scheduling scheme to coordinate the scheduling among VNFs of multiple services, which achieves network utility maximization with delay guarantee for each service. Researchers and graduate students working in the areas of electrical engineering, computing engineering and computer science will find this book useful as a reference or secondary text. Professionals in industry seeking solutions to dynamic resource management for 5G and beyond networks will also want to purchase this book.

商品描述(中文翻譯)

本書提供了一個及時且全面的研究,針對服務導向的第五代(5G)及未來核心網路中的動態資源管理進行探討。這包括開發高效的計算資源供應和排程解決方案,以保證端到端(E2E)數據傳遞延遲的一致服務性能的視角。
網路切片是由軟體定義網路(SDN)和網路功能虛擬化(NFV)範式所實現的。對於具有目標流量負載的網路切片,E2E 服務交付是通過虛擬網路功能(VNF)放置和靜態資源分配的流量路由來實現的。當數據流量進入網路時,流量負載是動態的,可能會偏離目標值,這可能導致服務質量(QoS)性能下降和網路擁塞。數據流量在不同的時間粒度上具有動態性。例如,流量統計(例如,均值和方差)可能是非平穩的,並且在粗略的時間粒度上會經歷顯著變化,這通常是可預測的。在長時間持續的平穩流量統計中,存在小時間尺度上的流量動態,這通常是高度突發且不可預測的。為了提供持續的 QoS 性能保證並確保網路切片隨時間的高效和公平運作,開發針對虛擬網路運作中流量動態的嵌入式服務的動態資源管理方案是至關重要的。排隊理論被用於系統建模,並應用不同的技術,包括優化和機器學習,來解決動態資源管理問題。
基於簡化的 M/M/1 排隊模型和泊松流量到達,提出了一個流量遷移的優化模型,以適應平均流量速率的大時間尺度變化,同時保證平均 E2E 延遲,並解決負載平衡與流量遷移開銷之間的權衡。為了克服泊松流量模型的限制,作者提出了一種機器學習方法,用於動態 VNF 資源擴展和遷移。這個新解決方案捕捉了現實世界流量追蹤中固有的流量模式,並在大時間尺度上具有非平穩流量統計,預測 VNF 資源擴展的資源需求,並觸發自適應 VNF 遷移決策,以實現負載平衡、遷移成本降低和資源過載懲罰抑制。對於動態資源管理,研究了監督式和非監督式機器學習工具。為了適應小時間粒度的流量動態,作者提出了一種動態 VNF 排程方案,以協調多個服務的 VNF 之間的排程,實現每個服務的延遲保證下的網路效用最大化。從事電機工程、計算工程和計算機科學領域的研究人員和研究生將會發現本書作為參考或輔助教材非常有用。尋求針對 5G 及未來網路的動態資源管理解決方案的業界專業人士也會希望購買本書。