Data-Driven Evolutionary Optimization: Integrating Evolutionary Computation, Machine Learning and Data Science
暫譯: 數據驅動的進化優化:整合進化計算、機器學習與數據科學

Jin, Yaochu, Wang, Handing, Sun, Chaoli

相關主題

商品描述

Intended for researchers and practitioners alike, this book covers carefully selected yet broad topics in optimization, machine learning, and metaheuristics. Written by world-leading academic researchers who are extremely experienced in industrial applications, this self-contained book is the first of its kind that provides comprehensive background knowledge, particularly practical guidelines, and state-of-the-art techniques. New algorithms are carefully explained, further elaborated with pseudocode or flowcharts, and full working source code is made freely available.

This is followed by a presentation of a variety of data-driven single- and multi-objective optimization algorithms that seamlessly integrate modern machine learning such as deep learning and transfer learning with evolutionary and swarm optimization algorithms. Applications of data-driven optimization ranging from aerodynamic design, optimization of industrial processes, to deep neural architecture search are included.

商品描述(中文翻譯)

本書旨在為研究人員和實務工作者提供服務,涵蓋了精心挑選但範圍廣泛的優化、機器學習和元啟發式演算法主題。由在工業應用方面極具經驗的世界領先學術研究者撰寫,這本自成一體的書籍是同類書籍中的首創,提供了全面的背景知識,特別是實用指導方針和最先進的技術。新演算法經過仔細解釋,並以偽代碼或流程圖進一步闡述,完整的可運行源代碼也免費提供。

接下來,書中介紹了各種數據驅動的單目標和多目標優化演算法,這些演算法無縫整合了現代機器學習技術,如深度學習和遷移學習,與進化演算法和群體智慧演算法。數據驅動優化的應用範圍包括氣動設計、工業過程優化以及深度神經網絡架構搜索等。

最後瀏覽商品 (20)