The Geometry of Uncertainty: The Geometry of Imprecise Probabilities
暫譯: 不確定性的幾何:不精確機率的幾何學
Cuzzolin, Fabio
- 出版商: Springer
- 出版日期: 2020-12-18
- 售價: $11,030
- 貴賓價: 9.5 折 $10,479
- 語言: 英文
- 頁數: 850
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 3030631524
- ISBN-13: 9783030631529
海外代購書籍(需單獨結帳)
商品描述
The principal aim of this book is to introduce to the widest possible audience an original view of belief calculus and uncertainty theory. In this geometric approach to uncertainty, uncertainty measures can be seen as points of a suitably complex geometric space, and manipulated in that space, for example, combined or conditioned.
In the chapters in Part I, Theories of Uncertainty, the author offers an extensive recapitulation of the state of the art in the mathematics of uncertainty. This part of the book contains the most comprehensive summary to date of the whole of belief theory, with Chap. 4 outlining for the first time, and in a logical order, all the steps of the reasoning chain associated with modelling uncertainty using belief functions, in an attempt to provide a self-contained manual for the working scientist. In addition, the book proposes in Chap. 5 what is possibly the most detailed compendium available of all theories of uncertainty. Part II, The Geometry of Uncertainty, is the core of this book, as it introduces the author's own geometric approach to uncertainty theory, starting with the geometry of belief functions: Chap. 7 studies the geometry of the space of belief functions, or belief space, both in terms of a simplex and in terms of its recursive bundle structure; Chap. 8 extends the analysis to Dempster's rule of combination, introducing the notion of a conditional subspace and outlining a simple geometric construction for Dempster's sum; Chap. 9 delves into the combinatorial properties of plausibility and commonality functions, as equivalent representations of the evidence carried by a belief function; then Chap. 10 starts extending the applicability of the geometric approach to other uncertainty measures, focusing in particular on possibility measures (consonant belief functions) and the related notion of a consistent belief function. The chapters in Part III, Geometric Interplays, are concerned with the interplay of uncertainty measures of different kinds, and the geometry of their relationship, with a particular focus on the approximation problem. Part IV, Geometric Reasoning, examines the application of the geometric approach to the various elements of the reasoning chain illustrated in Chap. 4, in particular conditioning and decision making. Part V concludes the book by outlining a future, complete statistical theory of random sets, future extensions of the geometric approach, and identifying high-impact applications to climate change, machine learning and artificial intelligence.
The book is suitable for researchers in artificial intelligence, statistics, and applied science engaged with theories of uncertainty. The book is supported with the most comprehensive bibliography on belief and uncertainty theory.
商品描述(中文翻譯)
本書的主要目的是向最廣泛的讀者介紹信念演算和不確定性理論的原創觀點。在這種幾何方法的不確定性中,不確定性度量可以被視為適當複雜的幾何空間中的點,並在該空間中進行操作,例如,進行組合或條件化。
在第一部分《不確定性理論》的章節中,作者提供了不確定性數學的最新進展的廣泛回顧。本書的這一部分包含了迄今為止對整個信念理論的最全面總結,第4章首次以邏輯順序概述了與使用信念函數建模不確定性相關的推理鏈的所有步驟,試圖為在職科學家提供一本自足的手冊。此外,本書在第5章中提出了可能是目前最詳細的不確定性理論彙編。第二部分《不確定性的幾何學》是本書的核心,因為它介紹了作者自己對不確定性理論的幾何方法,從信念函數的幾何學開始:第7章研究信念函數空間或信念空間的幾何學,既從單純形的角度,也從其遞歸束結構的角度;第8章將分析擴展到邁普斯特的組合規則,引入條件子空間的概念,並概述邁普斯特和的簡單幾何構造;第9章深入探討了可行性和共通性函數的組合性質,作為信念函數所承載的證據的等效表示;然後第10章開始將幾何方法的適用性擴展到其他不確定性度量,特別關注可能性度量(相容信念函數)及其相關的相容信念函數概念。第三部分《幾何互動》的章節關注不同類型的不確定性度量之間的相互作用及其關係的幾何學,特別聚焦於近似問題。第四部分《幾何推理》檢視幾何方法在第4章中所示的推理鏈各個元素的應用,特別是條件化和決策制定。第五部分總結了本書,概述了隨機集的未來完整統計理論、幾何方法的未來擴展,以及識別對氣候變化、機器學習和人工智慧的高影響應用。
本書適合從事不確定性理論的人工智慧、統計學和應用科學的研究人員。本書附有最全面的信念和不確定性理論的參考書目。