Probabilistic Graphical Models: Principles and Applications, 2/e (Hardcover)
暫譯: 機率圖模型:原則與應用,第二版(精裝本)
Sucar, Luis Enrique
- 出版商: Springer
- 出版日期: 2020-12-24
- 售價: $2,990
- 貴賓價: 9.5 折 $2,841
- 語言: 英文
- 頁數: 355
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 3030619427
- ISBN-13: 9783030619428
-
相關翻譯:
概率圖模型原理與應用, 2/e (簡中版)
商品描述
This accessible text/reference provides a general introduction to probabilistic graphical models (PGMs) from an engineering perspective.
The book covers the fundamentals for each of the main classes of PGMs, including representation, inference and learning principles, and reviews real-world applications for each type of model. These applications are drawn from a broad range of disciplines, highlighting the many uses of Bayesian classifiers, hidden Markov models, Bayesian networks, dynamic and temporal Bayesian networks, Markov random fields, influence diagrams, and Markov decision processes.
Topics and features: presents a unified framework encompassing all of the main classes of PGMs; explores the fundamental aspects of representation, inference and learning for each technique; describes the practical application of the different techniques; examines the latest developments in the field, covering multidimensional Bayesian classifiers, relational graphical models and causal models; provides exercises, suggestions for further reading, and ideas for research or programming projects at the end of each chapter; suggests possible course outlines for instructors in the preface.
This classroom-tested work is suitable as a textbook for an advanced undergraduate or a graduate course in probabilistic graphical models for students of computer science, engineering, and physics. Professionals wishing to apply probabilistic graphical models in their own field, or interested in the basis of these techniques, will also find the book to be an invaluable reference.
商品描述(中文翻譯)
這本易於理解的文本/參考資料從工程的角度提供了對機率圖模型(PGMs)的概述。
本書涵蓋了每個主要類別的PGMs的基本原理,包括表示法、推理和學習原則,並回顧了每種類型模型的實際應用。這些應用來自廣泛的學科,突顯了貝葉斯分類器、隱馬可夫模型、貝葉斯網絡、動態和時間貝葉斯網絡、馬可夫隨機場、影響圖和馬可夫決策過程的多種用途。
主題和特點:提供一個統一的框架,涵蓋所有主要類別的PGMs;探討每種技術的表示法、推理和學習的基本方面;描述不同技術的實際應用;檢視該領域的最新發展,涵蓋多維貝葉斯分類器、關聯圖模型和因果模型;在每章結尾提供練習題、進一步閱讀的建議以及研究或程式設計專案的想法;在前言中為教師建議可能的課程大綱。
這本經過課堂測試的著作適合作為計算機科學、工程和物理學的高年級本科生或研究生課程的教科書。希望在自己領域應用機率圖模型的專業人士,或對這些技術的基礎感興趣的人,也會發現這本書是一本寶貴的參考資料。
作者簡介
Dr. Luis Enrique Sucar is a Senior Research Scientist in the Department of Computing at the National Institute of Astrophysics, Optics and Electronics (INAOE), Mexico.
作者簡介(中文翻譯)
路易斯·恩里克·蘇卡博士是墨西哥國立天文學、光學與電子學研究所(INAOE)計算部的高級研究科學家。