Introduction to Linear and Matrix Algebra
暫譯: 線性與矩陣代數入門

Johnston, Nathaniel

  • 出版商: Springer
  • 出版日期: 2021-05-20
  • 售價: $2,480
  • 貴賓價: 9.5$2,356
  • 語言: 英文
  • 頁數: 484
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 3030528103
  • ISBN-13: 9783030528102
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

This textbook emphasizes the interplay between algebra and geometry to motivate the study of linear algebra. Matrices and linear transformations are presented as two sides of the same coin, with their connection motivating inquiry throughout the book. By focusing on this interface, the author offers a conceptual appreciation of the mathematics that is at the heart of further theory and applications. Those continuing to a second course in linear algebra will appreciate the companion volume Advanced Linear and Matrix Algebra.

Starting with an introduction to vectors, matrices, and linear transformations, the book focuses on building a geometric intuition of what these tools represent. Linear systems offer a powerful application of the ideas seen so far, and lead onto the introduction of subspaces, linear independence, bases, and rank. Investigation then focuses on the algebraic properties of matrices that illuminate the geometry of the linear transformations that they represent. Determinants, eigenvalues, and eigenvectors all benefit from this geometric viewpoint. Throughout, "Extra Topic" sections augment the core content with a wide range of ideas and applications, from linear programming, to power iteration and linear recurrence relations. Exercises of all levels accompany each section, including many designed to be tackled using computer software.

 

Introduction to Linear and Matrix Algebra is ideal for an introductory proof-based linear algebra course. The engaging color presentation and frequent marginal notes showcase the author's visual approach. Students are assumed to have completed one or two university-level mathematics courses, though calculus is not an explicit requirement. Instructors will appreciate the ample opportunities to choose topics that align with the needs of each classroom, and the online homework sets that are available through WeBWorK.

商品描述(中文翻譯)

這本教科書強調代數與幾何之間的相互作用,以激發對線性代數的學習動機。矩陣和線性變換被呈現為同一事物的兩個面向,它們之間的聯繫激發了全書的探究。通過專注於這一界面,作者提供了對數學的概念性理解,這些數學是進一步理論和應用的核心。那些繼續進修第二門線性代數課程的讀者將會欣賞伴隨的書籍《進階線性與矩陣代數》。

本書從向量、矩陣和線性變換的介紹開始,重點在於建立這些工具所代表的幾何直覺。線性系統提供了前面所見思想的強大應用,並引入了子空間、線性獨立性、基底和秩。接下來的研究專注於矩陣的代數性質,這些性質揭示了它們所代表的線性變換的幾何特性。行列式、特徵值和特徵向量都受益於這種幾何觀點。在整個過程中,「額外主題」部分增補了核心內容,涵蓋了從線性規劃到冪迭代和線性遞歸關係的廣泛思想和應用。每個部分都有各種難度的練習題,包括許多設計為使用計算機軟體解決的題目。

《線性與矩陣代數導論》非常適合用於入門的基於證明的線性代數課程。引人入勝的彩色呈現和頻繁的邊註展示了作者的視覺化方法。假設學生已完成一到兩門大學級別的數學課程,雖然微積分並不是明確的要求。教師將會欣賞有充足的機會選擇符合每個課堂需求的主題,以及通過 WeBWorK 提供的在線作業集。

作者簡介

Nathaniel Johnston is an Associate Professor of Mathematics at Mount Allison University in New Brunswick, Canada. His research makes use of linear algebra, matrix analysis, and convex optimization to tackle questions related to the theory of quantum entanglement. His companion volume, Advanced Linear and Matrix Algebra, is also published by Springer.

作者簡介(中文翻譯)

Nathaniel Johnston 是加拿大新不倫瑞克省蒙特艾利森大學的數學副教授。他的研究利用線性代數、矩陣分析和凸優化來解決與量子糾纏理論相關的問題。他的伴隨著作 Advanced Linear and Matrix Algebra 也由施普林格出版。