Analog IC Placement Generation Via Neural Networks from Unlabeled Data
暫譯: 透過無標籤數據生成類比集成電路佈局的神經網絡方法

Gusmão, António, Horta, Nuno, Lourenço, Nuno

  • 出版商: Springer
  • 出版日期: 2020-07-01
  • 售價: $2,420
  • 貴賓價: 9.5$2,299
  • 語言: 英文
  • 頁數: 87
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 3030500608
  • ISBN-13: 9783030500603
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

In this book, innovative research using artificial neural networks (ANNs) is conducted to automate the placement task in analog integrated circuit layout design, by creating a generalized model that can generate valid layouts at push-button speed. Further, it exploits ANNs' generalization and push-button speed prediction (once fully trained) capabilities, and details the optimal description of the input/output data relation. The description developed here is chiefly reflected in two of the system's characteristics: the shape of the input data and the minimized loss function. In order to address the latter, abstract and segmented descriptions of both the input data and the objective behavior are developed, which allow the model to identify, in newer scenarios, sub-blocks which can be found in the input data. This approach yields device-level descriptions of the input topology that, for each device, focus on describing its relation to every other device in the topology. By means of these descriptions, an unfamiliar overall topology can be broken down into devices that are subject to the same constraints as a device in one of the training topologies.

In the experimental results chapter, the trained ANNs are used to produce a variety of valid placement solutions even beyond the scope of the training/validation sets, demonstrating the model's effectiveness in terms of identifying common components between newer topologies and reutilizing the acquired knowledge. Lastly, the methodology used can readily adapt to the given problem's context (high label production cost), resulting in an efficient, inexpensive and fast model.

商品描述(中文翻譯)

在本書中,利用人工神經網路(ANNs)進行創新研究,以自動化模擬集成電路佈局設計中的佈置任務,透過創建一個通用模型,能夠以按鈕點擊的速度生成有效的佈局。此外,該研究利用ANNs的泛化能力和按鈕點擊速度預測能力(在完全訓練後),並詳細說明輸入/輸出數據關係的最佳描述。這裡開發的描述主要體現在系統的兩個特徵上:輸入數據的形狀和最小化的損失函數。為了解決後者,開發了輸入數據和目標行為的抽象和分段描述,這使得模型能夠在新的情境中識別輸入數據中的子區塊。這種方法產生了設備級的輸入拓撲描述,對於每個設備,重點描述其與拓撲中其他設備的關係。通過這些描述,一個不熟悉的整體拓撲可以被分解為受相同約束的設備,這些約束與訓練拓撲中的一個設備相同。

在實驗結果章節中,訓練好的ANNs被用來產生各種有效的佈置解決方案,甚至超出訓練/驗證集的範疇,展示了該模型在識別新拓撲之間的共同組件和重用獲得知識方面的有效性。最後,所使用的方法論可以輕鬆適應給定問題的背景(高標籤生產成本),從而產生一個高效、低成本且快速的模型。