Deep Learning in Healthcare: Paradigms and Applications
暫譯: 醫療保健中的深度學習:範式與應用
Chen, Yen-Wei, Jain, Lakhmi C.
- 出版商: Springer
- 出版日期: 2019-11-27
- 售價: $7,160
- 貴賓價: 9.5 折 $6,802
- 語言: 英文
- 頁數: 218
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 3030326055
- ISBN-13: 9783030326050
-
相關分類:
DeepLearning
海外代購書籍(需單獨結帳)
商品描述
This book provides a comprehensive overview of deep learning (DL) in medical and healthcare applications, including the fundamentals and current advances in medical image analysis, state-of-the-art DL methods for medical image analysis and real-world, deep learning-based clinical computer-aided diagnosis systems.
Deep learning (DL) is one of the key techniques of artificial intelligence (AI) and today plays an important role in numerous academic and industrial areas. DL involves using a neural network with many layers (deep structure) between input and output, and its main advantage of is that it can automatically learn data-driven, highly representative and hierarchical features and perform feature extraction and classification on one network. DL can be used to model or simulate an intelligent system or process using annotated training data.
Recently, DL has become widely used in medical applications, such as anatomic modelling, tumour detection, disease classification, computer-aided diagnosis and surgical planning. This book is intended for computer science and engineering students and researchers, medical professionals and anyone interested using DL techniques.
商品描述(中文翻譯)
這本書提供了深度學習(Deep Learning, DL)在醫療和健康應用中的全面概述,包括醫療影像分析的基本原理和當前進展、醫療影像分析的最先進DL方法以及基於深度學習的臨床電腦輔助診斷系統的實際應用。
深度學習(DL)是人工智慧(Artificial Intelligence, AI)的關鍵技術之一,今天在許多學術和工業領域中扮演著重要角色。DL涉及使用具有多層(深層結構)的神經網絡來連接輸入和輸出,其主要優勢在於能夠自動學習數據驅動的、高度代表性和分層的特徵,並在一個網絡上執行特徵提取和分類。DL可以用來建模或模擬一個智能系統或過程,使用帶標註的訓練數據。
最近,DL在醫療應用中變得廣泛使用,例如解剖建模、腫瘤檢測、疾病分類、電腦輔助診斷和手術規劃。本書旨在為計算機科學和工程的學生及研究人員、醫療專業人員以及任何對使用DL技術感興趣的人士提供參考。