Applied Data Science: Lessons Learned for the Data-Driven Business
暫譯: 應用數據科學:數據驅動業務的經驗教訓
Braschler, Martin, Stadelmann, Thilo, Stockinger, Kurt
- 出版商: Springer
- 出版日期: 2019-06-25
- 售價: $7,160
- 貴賓價: 9.5 折 $6,802
- 語言: 英文
- 頁數: 465
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 3030118207
- ISBN-13: 9783030118204
-
相關分類:
Data Science
海外代購書籍(需單獨結帳)
相關主題
商品描述
This book has two main goals: to define data science through the work of data scientists and their results, namely data products, while simultaneously providing the reader with relevant lessons learned from applied data science projects at the intersection of academia and industry. As such, it is not a replacement for a classical textbook (i.e., it does not elaborate on fundamentals of methods and principles described elsewhere), but systematically highlights the connection between theory, on the one hand, and its application in specific use cases, on the other.
With these goals in mind, the book is divided into three parts: Part I pays tribute to the interdisciplinary nature of data science and provides a common understanding of data science terminology for readers with different backgrounds. These six chapters are geared towards drawing a consistent picture of data science and were predominantly written by the editors themselves. Part II then broadens the spectrum by presenting views and insights from diverse authors - some from academia and some from industry, ranging from financial to health and from manufacturing to e-commerce. Each of these chapters describes a fundamental principle, method or tool in data science by analyzing specific use cases and drawing concrete conclusions from them. The case studies presented, and the methods and tools applied, represent the nuts and bolts of data science. Finally, Part III was again written from the perspective of the editors and summarizes the lessons learned that have been distilled from the case studies in Part II. The section can be viewed as a meta-study on data science across a broad range of domains, viewpoints and fields. Moreover, it provides answers to the question of what the mission-critical factors for success in different data science undertakings are.
The book targets professionals as well as students of data science: first, practicing data scientists in industry and academia who want to broaden their scope and expand their knowledge by drawing on the authors' combined experience. Second, decision makers in businesses who face the challenge of creating or implementing a data-driven strategy and who want to learn from success stories spanning a range of industries. Third, students of data science who want to understand both the theoretical and practical aspects of data science, vetted by real-world case studies at the intersection of academia and industry.
商品描述(中文翻譯)
這本書有兩個主要目標:通過數據科學家及其成果,即數據產品,來定義數據科學,同時為讀者提供來自學術界和產業交匯處的應用數據科學項目的相關經驗教訓。因此,它並不是傳統教科書的替代品(即,它不詳細闡述其他地方描述的方法和原則的基本概念),而是系統性地強調理論與具體使用案例之間的聯繫。
考慮到這些目標,本書分為三個部分:第一部分向數據科學的跨學科特性致敬,並為不同背景的讀者提供數據科學術語的共同理解。這六章旨在描繪數據科學的一致畫面,主要由編輯們撰寫。第二部分則擴大範圍,呈現來自不同作者的觀點和見解——一些來自學術界,另一些來自產業,涵蓋金融、健康、製造和電子商務等領域。每一章都通過分析具體的使用案例來描述數據科學中的基本原則、方法或工具,並從中得出具體結論。所呈現的案例研究以及所應用的方法和工具代表了數據科學的基礎。最後,第三部分再次從編輯的角度撰寫,總結了從第二部分案例研究中提煉出的經驗教訓。這一部分可以被視為對數據科學在廣泛領域、觀點和領域中的元研究。此外,它還回答了在不同數據科學工作中成功的關鍵因素是什麼的問題。
本書的目標讀者是數據科學的專業人士和學生:首先,行業和學術界的實踐數據科學家,他們希望通過借鑒作者的綜合經驗來擴展自己的視野和知識。其次,面臨創建或實施數據驅動策略挑戰的企業決策者,他們希望從涵蓋多個行業的成功案例中學習。第三,數據科學的學生,他們希望理解數據科學的理論和實踐方面,並通過學術界和產業交匯處的真實案例研究來驗證。
作者簡介
Prof. Dr. Thilo Stadelmann is a senior lecturer in computer science at ZHAW School of Engineering in Winterthur. His current research focuses on applications of machine learning, especially deep learning, to diverse kinds of data. He is head of the ZHAW Data Science Laboratory and member of the board of the Swiss Alliance for Data-Intensive Services. Before joining ZHAW, Thilo headed a team of software developers and data miners at TWT GmbH Science & Innovation, developing tailor-made data management applications for the German automotive industry. He has more than 10 years of experience as a professional software developer.
Prof. Dr. Kurt Stockinger is a senior lecturer in computer science at ZHAW and Director of Studies in Data Science. His research focuses on data warehousing (DWH), business intelligence (BI) and Big Data. He is also on the Advisory Board of Callista Group AG. Before joining ZHAW, Kurt was a DWH and BI Architect at Credit Suisse, Zurich where he worked on designing and implementing algorithms for a terabyte-scale enterprise data warehouse, data security, and DWH/BI applications. Prior, Kurt worked for four years at Lawrence Berkeley National Laboratory performing research on multi-dimensional indexing and query methods for large-scale scientific data as well as high-performance visual analytics. From 2000 to 2003 Kurt was heading the Replica Optimization Team of the EU Data Grid Project at CERN. In 2001 Kurt was a visiting researcher at California Institute of Technology.
作者簡介(中文翻譯)
馬丁·布拉施勒教授是蘇黎世應用科技大學(ZHAW)的高級講師,同時也是應用資訊技術研究所資訊工程組的負責人。他的主要研究興趣集中在非結構化資訊領域,特別是資訊檢索評估、跨語言資訊檢索和自然語言處理。他是CLEF活動的原始發起人之一,該活動是歐洲最大的資訊檢索及相關領域系統基準測試論壇。在加入ZHAW之前,他曾擔任瑞士蘇黎世的Eurospider Information Technology AG的研究與創新負責人,該公司是資訊檢索解決方案的供應商,因此他在將最先進技術轉移到商業市場方面擁有豐富的經驗。
蒂洛·斯塔德曼教授是ZHAW工程學院的計算機科學高級講師。他目前的研究重點是機器學習的應用,特別是深度學習,針對各種數據進行研究。他是ZHAW數據科學實驗室的負責人,也是瑞士數據密集型服務聯盟的董事會成員。在加入ZHAW之前,蒂洛在TWT GmbH Science & Innovation領導一個軟體開發和數據挖掘團隊,為德國汽車工業開發量身定制的數據管理應用程序。他擁有超過10年的專業軟體開發經驗。
庫爾特·斯托金格教授是ZHAW的計算機科學高級講師及數據科學學程主任。他的研究重點是數據倉儲(DWH)、商業智慧(BI)和大數據。他也是Callista Group AG的顧問委員會成員。在加入ZHAW之前,庫爾特曾在瑞士信貸擔任DWH和BI架構師,負責設計和實施一個TB級企業數據倉儲的算法、數據安全以及DWH/BI應用程序。在此之前,庫爾特在洛倫斯·伯克利國家實驗室工作了四年,進行大規模科學數據的多維索引和查詢方法以及高性能視覺分析的研究。從2000年到2003年,庫爾特負責CERN歐盟數據網格項目的副本優化團隊。2001年,庫爾特曾是加州理工學院的訪問研究員。