Optimized Cloud Based Scheduling
暫譯: 優化的雲端排程

Tan, Rong Kun Jason, Leong, John A., Sidhu, Amandeep S.

  • 出版商: Springer
  • 出版日期: 2019-02-11
  • 售價: $2,420
  • 貴賓價: 9.5$2,299
  • 語言: 英文
  • 頁數: 99
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 3030103331
  • ISBN-13: 9783030103330
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

This book presents an improved design for service provisioning and allocation models that are validated through running genome sequence assembly tasks in a hybrid cloud environment. It proposes approaches for addressing scheduling and performance issues in big data analytics and showcases new algorithms for hybrid cloud scheduling. Scientific sectors such as bioinformatics, astronomy, high-energy physics, and Earth science are generating a tremendous flow of data, commonly known as big data. In the context of growing demand for big data analytics, cloud computing offers an ideal platform for processing big data tasks due to its flexible scalability and adaptability. However, there are numerous problems associated with the current service provisioning and allocation models, such as inefficient scheduling algorithms, overloaded memory overheads, excessive node delays and improper error handling of tasks, all of which need to be addressed to enhance the performance of big data analytics.

商品描述(中文翻譯)

本書提出了一種改進的服務提供和分配模型設計,並通過在混合雲環境中運行基因組序列組裝任務進行驗證。它提出了解決大數據分析中的排程和性能問題的方法,並展示了混合雲排程的新算法。生物信息學、天文學、高能物理學和地球科學等科學領域正在產生大量數據,通常稱為大數據。在對大數據分析需求日益增長的背景下,雲計算提供了一個理想的平台來處理大數據任務,因為它具有靈活的可擴展性和適應性。然而,目前的服務提供和分配模型存在許多問題,例如低效的排程算法、過載的內存開銷、過度的節點延遲以及任務的不當錯誤處理,這些都需要解決以提高大數據分析的性能。

最後瀏覽商品 (20)