Evolutionary Algorithms and Neural Networks: Theory and Applications
暫譯: 進化演算法與神經網路:理論與應用

Mirjalili, Seyedali

  • 出版商: Springer
  • 出版日期: 2019-01-19
  • 售價: $5,380
  • 貴賓價: 9.5$5,111
  • 語言: 英文
  • 頁數: 172
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 3030065723
  • ISBN-13: 9783030065720
  • 相關分類: Algorithms-data-structures
  • 海外代購書籍(需單獨結帳)

商品描述

This book introduces readers to the fundamentals of artificial neural networks, with a special emphasis on evolutionary algorithms. At first, the book offers a literature review of several well-regarded evolutionary algorithms, including particle swarm and ant colony optimization, genetic algorithms and biogeography-based optimization. It then proposes evolutionary version of several types of neural networks such as feed forward neural networks, radial basis function networks, as well as recurrent neural networks and multi-later perceptron. Most of the challenges that have to be addressed when training artificial neural networks using evolutionary algorithms are discussed in detail. The book also demonstrates the application of the proposed algorithms for several purposes such as classification, clustering, approximation, and prediction problems. It provides a tutorial on how to design, adapt, and evaluate artificial neural networks as well, and includes source codes for most of the proposed techniques as supplementary materials.

商品描述(中文翻譯)

本書向讀者介紹人工神經網絡的基本原理,特別強調進化演算法。首先,本書提供了幾種知名進化演算法的文獻回顧,包括粒子群優化(particle swarm optimization)、蟻群優化(ant colony optimization)、遺傳演算法(genetic algorithms)和生物地理學優化(biogeography-based optimization)。接著,書中提出了幾種神經網絡的進化版本,例如前饋神經網絡(feed forward neural networks)、徑向基函數網絡(radial basis function networks)、遞迴神經網絡(recurrent neural networks)以及多層感知器(multi-layer perceptron)。本書詳細討論了在使用進化演算法訓練人工神經網絡時必須解決的大多數挑戰。此外,本書還展示了所提演算法在分類、聚類、近似和預測等多種用途上的應用。它還提供了如何設計、調整和評估人工神經網絡的教程,並附上大多數提議技術的源代碼作為補充材料。