A Guided Tour of Artificial Intelligence Research: Volume I: Knowledge Representation, Reasoning and Learning
暫譯: 人工智慧研究導覽:第一卷:知識表示、推理與學習
Pierre Marquis , Odile Papini , Henri Prade
商品描述
The purpose of this book is to provide an overview of AI research, ranging from basic work to interfaces and applications, with as much emphasis on results as on current issues. It is aimed at an audience of master students and Ph.D. students, and can be of interest as well for researchers and engineers who want to know more about AI. The book is split into three volumes:
- the first volume brings together twenty-three chapters dealing with the foundations of knowledge representation and the formalization of reasoning and learning (Volume 1. Knowledge representation, reasoning and learning)
- the second volume offers a view of AI, in fourteen chapters, from the side of the algorithms (Volume 2. AI Algorithms)
- the third volume, composed of sixteen chapters, describes the main interfaces and applications of AI (Volume 3. Interfaces and applications of AI).
Implementing reasoning or decision making processes requires an appropriate representation of the pieces of information to be exploited. This first volume starts with a historical chapter sketching the slow emergence of building blocks of AI along centuries. Then the volume provides an organized overview of different logical, numerical, or graphical representation formalisms able to handle incomplete information, rules having exceptions, probabilistic and possibilistic uncertainty (and beyond), as well as taxonomies, time, space, preferences, norms, causality, and even trust and emotions among agents. Different types of reasoning, beyond classical deduction, are surveyed including nonmonotonic reasoning, belief revision, updating, information fusion, reasoning based on similarity (case-based, interpolative, or analogical), as well as reasoning about actions, reasoning about ontologies (description logics), argumentation, and negotiation or persuasion between agents. Three chapters deal with decision making, be it multiple criteria, collective, or under uncertainty. Two chapters cover statistical computational learning and reinforcement learning (other machine learning topics are covered in Volume 2). Chapters on diagnosis and supervision, validation and explanation, and knowledge base acquisition complete the volume.
商品描述(中文翻譯)
本書的目的是提供人工智慧(AI)研究的概述,涵蓋從基礎工作到介面和應用的各個方面,並同樣強調研究結果與當前議題。目標讀者為碩士生和博士生,同時也適合希望深入了解AI的研究人員和工程師。本書分為三卷:
- 第一卷匯集了二十三章,探討知識表示的基礎以及推理和學習的形式化(第一卷:知識表示、推理與學習)
- 第二卷提供了從算法的角度看AI的十四章內容(第二卷:AI算法)
- 第三卷由十六章組成,描述AI的主要介面和應用(第三卷:AI的介面與應用)。
實施推理或決策過程需要對要利用的信息進行適當的表示。第一卷以一個歷史章節開始,勾勒出AI基礎構件在幾個世紀中緩慢出現的過程。接著,本卷提供了不同邏輯、數值或圖形表示形式的有組織概述,這些形式能夠處理不完整的信息、具有例外的規則、概率和可能性的不確定性(及其他),以及分類法、時間、空間、偏好、規範、因果關係,甚至代理之間的信任和情感。除了經典的演繹推理外,還調查了不同類型的推理,包括非單調推理、信念修正、更新、信息融合、基於相似性的推理(案例基礎、插值或類比推理),以及關於行動的推理、關於本體的推理(描述邏輯)、論證、以及代理之間的協商或說服。三章專門討論決策,無論是多準則、集體決策,還是在不確定性下的決策。兩章涵蓋統計計算學習和強化學習(其他機器學習主題在第二卷中討論)。有關診斷和監督、驗證和解釋、以及知識庫獲取的章節補充了本卷的內容。