Adaptive Resonance Theory in Social Media Data Clustering: Roles, Methodologies, and Applications
暫譯: 社交媒體數據聚類中的自適應共振理論:角色、方法論與應用
Meng, Lei, Tan, Ah-Hwee, Wunsch II, Donald C.
- 出版商: Springer
- 出版日期: 2019-05-14
- 售價: $4,510
- 貴賓價: 9.5 折 $4,285
- 語言: 英文
- 頁數: 190
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 3030029840
- ISBN-13: 9783030029845
海外代購書籍(需單獨結帳)
相關主題
商品描述
Social media data contains our communication and online sharing, mirroring our daily life. This book looks at how we can use and what we can discover from such big data:
- Basic knowledge (data & challenges) on social media analytics
- Clustering as a fundamental technique for unsupervised knowledge discovery and data mining
- A class of neural inspired algorithms, based on adaptive resonance theory (ART), tackling challenges in big social media data clustering
- Step-by-step practices of developing unsupervised machine learning algorithms for real-world applications in social media domain
Adaptive Resonance Theory in Social Media Data Clustering stands on the fundamental breakthrough in cognitive and neural theory, i.e. adaptive resonance theory, which simulates how a brain processes information to perform memory, learning, recognition, and prediction.
It presents initiatives on the mathematical demonstration of ART's learning mechanisms in clustering, and illustrates how to extend the base ART model to handle the complexity and characteristics of social media data and perform associative analytical tasks.
Both cutting-edge research and real-world practices on machine learning and social media analytics are included in the book and if you wish to learn the answers to the following questions, this book is for you:
- How to process big streams of multimedia data?
- How to analyze social networks with heterogeneous data?
- How to understand a user's interests by learning from online posts and behaviors?
- How to create a personalized search engine by automatically indexing and searching multimodal information resources?
.
商品描述(中文翻譯)
社交媒體數據包含我們的溝通和線上分享,反映了我們的日常生活。本書探討了我們如何使用這些大數據以及可以從中發現什麼:
- 社交媒體分析的基本知識(數據與挑戰)
- 聚類作為無監督知識發現和數據挖掘的基本技術
- 一類基於自適應共鳴理論(Adaptive Resonance Theory, ART)的神經啟發算法,解決大規模社交媒體數據聚類中的挑戰
- 開發無監督機器學習算法在社交媒體領域的實際應用的逐步實踐
《社交媒體數據聚類中的自適應共鳴理論》基於認知和神經理論的根本突破,即自適應共鳴理論,該理論模擬大腦如何處理信息以執行記憶、學習、識別和預測。
本書展示了ART在聚類中的學習機制的數學演示,並說明如何擴展基礎ART模型以處理社交媒體數據的複雜性和特徵,並執行關聯分析任務。
本書包含了機器學習和社交媒體分析的前沿研究和實際應用,如果您希望了解以下問題的答案,本書將非常適合您:
- 如何處理大量的多媒體數據流?
- 如何分析具有異質數據的社交網絡?
- 如何通過學習線上帖子和行為來理解用戶的興趣?
- 如何通過自動索引和搜索多模態信息資源來創建個性化搜索引擎?