Memetic Computation: The Mainspring of Knowledge Transfer in a Data-Driven Optimization Era (Adaptation, Learning, and Optimization)
暫譯: 模因計算:數據驅動優化時代知識轉移的主要動力(適應、學習與優化)

Abhishek Gupta, Yew-Soon Ong

  • 出版商: Springer
  • 出版日期: 2019-02-05
  • 售價: $6,400
  • 貴賓價: 9.5$6,080
  • 語言: 英文
  • 頁數: 104
  • 裝訂: Hardcover
  • ISBN: 3030027287
  • ISBN-13: 9783030027285
  • 相關分類: Java 相關技術
  • 海外代購書籍(需單獨結帳)

商品描述

This book bridges the widening gap between two crucial constituents of computational intelligence: the rapidly advancing technologies of machine learning in the digital information age, and the relatively slow-moving field of general-purpose search and optimization algorithms. With this in mind, the book serves to offer a data-driven view of optimization, through the framework of memetic computation (MC). The authors provide a summary of the complete timeline of research activities in MC – beginning with the initiation of memes as local search heuristics hybridized with evolutionary algorithms, to their modern interpretation as computationally encoded building blocks of problem-solving knowledge that can be learned from one task and adaptively transmitted to another. In the light of recent research advances, the authors emphasize the further development of MC as a simultaneous problem learning and optimization paradigm with the potential to showcase human-like problem-solving prowess; that is, by equipping optimization engines to acquire increasing levels of intelligence over time through embedded memes learned independently or via interactions. In other words, the adaptive utilization of available knowledge memes makes it possible for optimization engines to tailor custom search behaviors on the fly – thereby paving the way to general-purpose problem-solving ability (or artificial general intelligence). In this regard, the book explores some of the latest concepts from the optimization literature, including, the sequential transfer of knowledge across problems, multitasking, and large-scale (high dimensional) search, systematically discussing associated algorithmic developments that align with the general theme of memetics.
 
The presented ideas are intended to be accessible to a wide audience of scientific researchers, engineers, students, and optimization practitioners who are familiar with the commonly used terminologies of evolutionary computation. A full appreciation of the mathematical formalizations and algorithmic contributions requires an elementary background in probability, statistics, and the concepts of machine learning. A prior knowledge of surrogate-assisted/Bayesian optimization techniques is useful, but not essential.

商品描述(中文翻譯)

這本書彌合了計算智能中兩個關鍵組成部分之間日益擴大的鴻溝:在數位信息時代快速發展的機器學習技術,以及相對緩慢發展的通用搜索和優化算法領域。考慮到這一點,本書旨在通過模因計算(memetic computation, MC)的框架提供一個以數據為驅動的優化觀點。作者總結了MC研究活動的完整時間線——從模因作為與進化算法混合的局部搜索啟發式的起始,到它們作為計算編碼的問題解決知識的現代詮釋,這些知識可以從一個任務中學習並自適應地傳遞到另一個任務。鑒於最近的研究進展,作者強調了MC作為一種同時學習問題和優化的範式的進一步發展,這種範式有潛力展示類似人類的問題解決能力;也就是說,通過裝備優化引擎,使其隨著時間的推移獲得越來越高的智能水平,這些智能是通過獨立學習或互動獲得的嵌入式模因。換句話說,對可用知識模因的自適應利用使得優化引擎能夠即時調整自定義搜索行為——從而為通用問題解決能力(或人工通用智能)鋪平道路。在這方面,本書探討了一些來自優化文獻的最新概念,包括跨問題的知識序列轉移、多任務處理和大規模(高維)搜索,系統地討論與模因學主題相關的算法發展。

所提出的觀點旨在使廣泛的科學研究人員、工程師、學生和熟悉進化計算常用術語的優化實踐者能夠理解。充分理解數學形式化和算法貢獻需要具備概率、統計和機器學習概念的基礎知識。對代理輔助/貝葉斯優化技術的先前了解是有幫助的,但並非必需。