Spectral Mixture for Remote Sensing: Linear Model and Applications (Springer Remote Sensing/Photogrammetry)
暫譯: 遙感的光譜混合:線性模型與應用(Springer 遙感/攝影測量)
Yosio Edemir Shimabukuro, Flávio Jorge Ponzoni
- 出版商: Springer
- 出版日期: 2018-11-22
- 售價: $5,910
- 貴賓價: 9.5 折 $5,615
- 語言: 英文
- 頁數: 80
- 裝訂: Hardcover
- ISBN: 3030020169
- ISBN-13: 9783030020163
海外代購書籍(需單獨結帳)
相關主題
商品描述
This book explains in a didactic way the basic concepts of spectral mixing, digital numbers and orbital sensors, and then presents the linear modelling technique of spectral mixing and the generation of fractional images. In addition to presenting a theoretical basis for spectral mixing, the book provides examples of practical applications such as projects for estimating and monitoring deforested areas in the Amazon. In its seven chapters, the book offers remote sensing techniques to understand the main concepts, methods, and limitations of spectral mixing for digital image processing.
Chapter 1 addresses the basic concepts of spectral mixing, while chapters 2 and 3 discuss digital numbers and orbital sensors such as MODIS and Landsat MSS. Chapter 4 details the linear spectral mixing model, and chapter 5 talks about how to use this technique to create fraction images. Chapter 6 offers remote sensing applications of fraction images in deforestation monitoring, burned-area mapping, selective logging detection, and land-use/land-cover mapping. Chapter 7 gives some concluding thoughts on spectral mixing, and considers future uses in environmental remote sensing. This book will be of interest to students, teachers, and researchers using remote sensing for Earth observation and environmental modelling.
商品描述(中文翻譯)
本書以教學方式解釋光譜混合的基本概念、數位數字和軌道感測器,然後介紹光譜混合的線性建模技術及分數影像的生成。除了提供光譜混合的理論基礎外,本書還提供了實際應用的範例,例如估算和監測亞馬遜地區森林砍伐的專案。在七個章節中,本書提供了遙感技術,以理解光譜混合在數位影像處理中的主要概念、方法和限制。
第一章探討光譜混合的基本概念,而第二章和第三章則討論數位數字和軌道感測器,如MODIS和Landsat MSS。第四章詳細介紹線性光譜混合模型,第五章則講述如何使用此技術來創建分數影像。第六章提供了分數影像在森林砍伐監測、燒毀區域繪製、選擇性伐木檢測和土地使用/覆蓋繪製中的遙感應用。第七章對光譜混合給出了一些結論性思考,並考慮未來在環境遙感中的應用。本書將對使用遙感進行地球觀測和環境建模的學生、教師和研究人員感興趣。