Learning Representation for Multi-View Data Analysis: Models and Applications (Advanced Information and Knowledge Processing)
暫譯: 多視角數據分析的表示學習:模型與應用(高級資訊與知識處理)

Zhengming Ding, Handong Zhao, Yun Fu

  • 出版商: Springer
  • 出版日期: 2018-12-17
  • 售價: $5,640
  • 貴賓價: 9.5$5,358
  • 語言: 英文
  • 頁數: 268
  • 裝訂: Hardcover
  • ISBN: 3030007332
  • ISBN-13: 9783030007331
  • 相關分類: Data Science
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

This book equips readers to handle complex multi-view data representation, centered around several major visual applications, sharing many tips and insights through a unified learning framework. This framework is able to model most existing multi-view learning and domain adaptation, enriching readers’ understanding from their similarity, and differences based on data organization and problem settings, as well as the research goal.

A comprehensive review exhaustively provides the key recent research on multi-view data analysis, i.e., multi-view clustering, multi-view classification, zero-shot learning, and domain adaption. More practical challenges in multi-view data analysis are discussed including incomplete, unbalanced and large-scale multi-view learning. Learning Representation for Multi-View Data Analysis covers a wide range of applications in the research fields of big data, human-centered computing, pattern recognition, digital marketing, web mining, and computer vision.

商品描述(中文翻譯)

這本書使讀者能夠處理複雜的多視角數據表示,圍繞幾個主要的視覺應用,通過統一的學習框架分享許多技巧和見解。這個框架能夠建模大多數現有的多視角學習和領域適應,豐富讀者對於數據組織和問題設定的相似性和差異性的理解,以及研究目標。

本書全面回顧了多視角數據分析的關鍵近期研究,即多視角聚類、多視角分類、零樣本學習和領域適應。還討論了多視角數據分析中的更多實際挑戰,包括不完整、不平衡和大規模的多視角學習。《多視角數據分析的學習表示》涵蓋了大數據、人本計算、模式識別、數位行銷、網路挖掘和計算機視覺等研究領域的廣泛應用。