Data-Driven Wireless Networks: A Compressive Spectrum Approach (SpringerBriefs in Electrical and Computer Engineering)
暫譯: 數據驅動的無線網絡:壓縮頻譜方法 (SpringerBriefs in Electrical and Computer Engineering)

Yue Gao

  • 出版商: Springer
  • 出版日期: 2018-11-07
  • 售價: $2,420
  • 貴賓價: 9.5$2,299
  • 語言: 英文
  • 頁數: 116
  • 裝訂: Paperback
  • ISBN: 3030002896
  • ISBN-13: 9783030002893
  • 相關分類: Wireless-networks
  • 海外代購書籍(需單獨結帳)

商品描述

This SpringerBrief discusses the applications of spare representation in wireless communications, with a particular focus on the most recent developed compressive sensing (CS) enabled approaches. With the help of sparsity property, sub-Nyquist sampling can be achieved in wideband cognitive radio networks by adopting compressive sensing, which is illustrated in this brief, and it starts with a comprehensive overview of compressive sensing principles. Subsequently, the authors present a complete framework for data-driven compressive spectrum sensing in cognitive radio networks, which guarantees robustness, low-complexity, and security.

 Particularly, robust compressive spectrum sensing, low-complexity compressive spectrum sensing, and secure compressive sensing based malicious user detection are proposed to address the various issues in wideband cognitive radio networks. Correspondingly, the real-world signals and data collected by experiments carried out during TV white space pilot trial enables data-driven compressive spectrum sensing. The collected data are analysed and used to verify our designs and provide significant insights on the potential of applying compressive sensing to wideband spectrum sensing.

 This SpringerBrief  provides readers a clear picture on how to exploit the compressive sensing to process wireless signals in wideband cognitive radio networks.  Students, professors, researchers, scientists, practitioners, and engineers working in the fields of compressive sensing in wireless communications will find this SpringerBrief  very useful as a short reference or study guide book.  Industry managers, and government research agency employees also working in the fields of compressive sensing in wireless communications will find this SpringerBrief useful as well.

商品描述(中文翻譯)

這本 SpringerBrief 討論了稀疏表示在無線通信中的應用,特別關注最近開發的壓縮感知 (Compressive Sensing, CS) 相關方法。在稀疏性特性的幫助下,通過採用壓縮感知,可以在寬頻認知無線電網絡中實現子奈奎斯特取樣,這在本書中有詳細說明,並以壓縮感知原理的全面概述作為開端。隨後,作者提出了一個完整的數據驅動壓縮頻譜感知框架,該框架保證了穩健性、低複雜性和安全性。

特別地,提出了穩健的壓縮頻譜感知、低複雜性的壓縮頻譜感知以及基於安全壓縮感知的惡意用戶檢測,以解決寬頻認知無線電網絡中的各種問題。相應地,通過在電視白空間試點試驗中進行的實驗收集的實際信號和數據使得數據驅動的壓縮頻譜感知成為可能。收集的數據被分析並用於驗證我們的設計,並提供了有關將壓縮感知應用於寬頻頻譜感知潛力的重要見解。

這本 SpringerBrief 為讀者提供了如何利用壓縮感知處理寬頻認知無線電網絡中的無線信號的清晰圖景。從事無線通信中壓縮感知領域的學生、教授、研究人員、科學家、實務工作者和工程師將會發現這本 SpringerBrief 作為短期參考或學習指南非常有用。從事無線通信中壓縮感知領域的行業經理和政府研究機構的員工也會覺得這本 SpringerBrief 有所幫助。