Data Modeling for MongoDB: Building Well-Designed and Supportable MongoDB Databases
暫譯: MongoDB 數據建模:構建設計良好且可支持的 MongoDB 數據庫
Hoberman, Steve
買這商品的人也買了...
-
$1,250$1,188 -
$1,685$1,601 -
$1,558JavaScript and JQuery: Interactive Front-End Web Development (Paperback)
-
$1,720$1,634 -
$1,617Deep Learning (Hardcover)
-
$978$929 -
$1,650$1,568 -
$1,400$1,330 -
$1,330$1,264 -
$1,715Interaction Design : Beyond Human-Computer Interaction, 5/e (Paperback)
-
$1,260$1,197 -
$1,936Full Stack Serverless: Modern Application Development with React, Aws, and Graphql
-
$1,840$1,748 -
$2,220$2,109
相關主題
商品描述
Master how to data model MongoDB applications.
Congratulations You completed the MongoDB application within the given tight timeframe and there is a party to celebrate your application's release into production. Although people are congratulating you at the celebration, you are feeling some uneasiness inside. To complete the project on time required making a lot of assumptions about the data, such as what terms meant and how calculations are derived. In addition, the poor documentation about the application will be of limited use to the support team, and not investigating all of the inherent rules in the data may eventually lead to poorly-performing structures in the not-so-distant future.
Now, what if you had a time machine and could go back and read this book. You would learn that even NoSQL databases like MongoDB require some level of data modeling. Data modeling is the process of learning about the data, and regardless of technology, this process must be performed for a successful application. You would learn the value of conceptual, logical, and physical data modeling and how each stage increases our knowledge of the data and reduces assumptions and poor design decisions.
Read this book to learn how to do data modeling for MongoDB applications, and accomplish these five objectives:
- Understand how data modeling contributes to the process of learning about the data, and is, therefore, a required technique, even when the resulting database is not relational. That is, NoSQL does not mean NoDataModeling
- Know how NoSQL databases differ from traditional relational databases, and where MongoDB fits.
- Explore each MongoDB object and comprehend how each compares to their data modeling and traditional relational database counterparts, and learn the basics of adding, querying, updating, and deleting data in MongoDB.
- Practice a streamlined, template-driven approach to performing conceptual, logical, and physical data modeling. Recognize that data modeling does not always have to lead to traditional data models
- Distinguish top-down from bottom-up development approaches and complete a top-down case study which ties all of the modeling techniques together.
商品描述(中文翻譯)
掌握如何為 MongoDB 應用程式進行資料建模。
恭喜你!你在緊迫的時間內完成了 MongoDB 應用程式,並且有一個派對來慶祝你應用程式的正式上線。儘管人們在慶祝活動中向你表示祝賀,但你內心感到一些不安。按時完成專案需要對資料做出許多假設,例如術語的含義以及計算的推導方式。此外,應用程式的文檔不佳將對支援團隊的幫助有限,而不調查資料中所有固有的規則,最終可能會導致不久的將來出現效能不佳的結構。
現在,假設你有一台時光機,可以回到過去閱讀這本書。你會了解到,即使是像 MongoDB 這樣的 NoSQL 資料庫也需要某種程度的資料建模。資料建模是了解資料的過程,無論技術如何,這個過程對於成功的應用程式都是必須的。你會學到概念性、邏輯性和物理性資料建模的價值,以及每個階段如何增加我們對資料的了解,並減少假設和不良設計決策。
閱讀這本書以學習如何為 MongoDB 應用程式進行資料建模,並達成以下五個目標:
1. 了解資料建模如何促進對資料的學習過程,因此即使最終的資料庫不是關聯型的,這也是一種必需的技術。也就是說,NoSQL 並不意味著 NoDataModeling。
2. 知道 NoSQL 資料庫與傳統關聯型資料庫的不同之處,以及 MongoDB 的定位。
3. 探索每個 MongoDB 物件,理解它們與資料建模和傳統關聯型資料庫對應物的比較,並學習在 MongoDB 中添加、查詢、更新和刪除資料的基本知識。
4. 練習一種精簡的、以模板為驅動的概念性、邏輯性和物理性資料建模方法。認識到 資料建模 不一定總是導致傳統的 資料模型。
5. 區分自上而下與自下而上的開發方法,並完成一個將所有建模技術結合在一起的自上而下案例研究。